
Towards a Language for Defining Reusable
Programming Language Components

(Project Paper)

Cas van der Rest1 and Casper Bach Poulsen2

c.r.vanderrest@tudelft.nl1 c.b.poulsen@tudelft.nl2

Delft University of Technology, Delft, The Netherlands

Abstract. Developing programming languages is a difficult task that
requires a lot of time, effort, and expertise. Reusable programming lan-
guage components make this task easier, by allowing language designers
to grab off-the-shelf components for common language features. Modern
functional programming languages, however, lack support for reuse of
definitions, and thus language components defined using algebraic data
types and pattern matching functions cannot be reused without modi-
fying or copying existing code. To improve the situation, we introduce
CS, a functional meta-language for developing reusable programming
language components, that features built-in support for extensible data
types and functions, as well as effects and handlers. In CS, we can define
language components using algebraic data types and pattern matching
functions, such that we can compose language components into larger
languages and define new interpretations for existing components with-
out modifying existing definitions.

1 Introduction

Developing programming languages is a difficult and time consuming task, which
requires a lot of expertise from the language designer. One way to reduce the
cost of language development is to build languages from reusable programming
components, allowing language designers to grab off-the-shelf components for
common language features. This approach has the potential to make language
development both cheaper and more accesbile, while producing specifications
that allow us to understand the semantics of language features independent from
the language they are a part of. Modern functional programming languages, how-
ever, lack support for reuse of definitions, and as a result, language components
built from algebraic data types and pattern matching functions cannot be reused
without modifying or copying existing code. To illustrate the kind of language
components we would like to define modularly, and where current functional pro-
gramming languages fall short for this purpose, we consider the implementation
of a tiny expression language and its interpreter in Haskell:

2 Cas van der Rest and Casper Bach Poulsen

data Expr = Lit Int | Div Expr Expr

eval :: MonadFail m ⇒ Expr → m Int
eval (Lit x) = Just x
eval (Div e1 e2) = do

v1 ← eval e1
v2 ← eval e2
if v2 6≡ 0 then v1 ‘div‘ v2 else fail

The Expr data type declares an abstract syntax type with constructors for lit-
erals and division, and the function eval implements an interpreter for Expr .
Importantly, eval needs to account for possible divisions by zero: evaluating
Div (Lit 10) (Lit 0), for example, should safely evaluate to a result that indi-
cates a failure, without crashing. For this reason eval does not produce an Int
directly, but rather wraps its result in an abstract monad m that encapsulates
the side effects of interpretation. In this case, we only assume that m is a member
of the MonadFail typeclass. The MonadFail class hase one function, fail :

class MonadFail m where
fail :: m a

We refer to functions, such as fail , that allow us to interact with an abstract
monad as operations. We choose to factor language definitions this way, because
it allows us to both define a completely new interpretation such as pretty print-
ing or compilation for Expr by writing new functions pretty :: Expr → String
or compile :: Expr → m [Instr], while also having the option to change the
implementation of existing semantics, by supplying alternative implementations
for the fail operation. We can summarize this approach to defining language
components with the following pipeline:

Syntax
denotation−−−−−−−→ Operations

implementation−−−−−−−−−−→ Result

That is, a denotation maps syntax to an appropriate domain. In the definition of
this domain, we distinguish between the type of the resulting value, and the side
effects of computing this result, which are encapsulated in an abstract monad.
We interact with this abstract monad using operations, and thus to extract a
result we must supply a monad that implements all required operations.

What if we want to extend this language? To add new constructors to the
abstract syntax tree, we must extend the definition of Expr , and modify all
functions that match on Expr accordingly. Furthermore, the new clauses for
these constructors may impose additional requirements on m for which we would
need to add more typeclass constraints, and any existing instantiations of m
would need to be updated to ensure that they are still a member of all required
typeclasses.

Clearly, for these reasons Expr and eval in their current form do not work
very well as a reusable language component. We introduce CS, a functional
meta-language for defining reusable programming language components. The

Towards a Language for Defining Resuable Language Components 3

goal of CS is to provide a language in which one can define language components
by defining data types and pattern matching functions, like Expr and eval ,
in such a way that we compose the syntax, interpretations, and effects of a
language component without affecting existing defintion. Importantly, we should
also retain the possibility to add completely new interpretations for existing
syntax by writing a new pattern matching function. In other words, CS should
solve the expression problem [33].

We can summarize this with following concrete design goals. In CS, one
should be able to

– extend existing abstract syntax types with new constructors without having
to modify existing definitions,

– extend existing denotations with clauses for new constructors, and define
new semantics for existing syntax by defining new denotations,

– define abstract effect operations, and use these operations to implement de-
notation clauses without having to worry about the operations needed by
other clauses, and

– define implementations for effect operations that are independent from the
implementations of other operations.

There exist abstractions, such as Data Types à la Carte [32] and Algebraic Ef-
fects and Handlers [25], that achieve the same goals. These provide the well-
understood formalism on wich CS is built. CS then provides a convenient sur-
face syntax for working with these abstractions that avoids the overhead that
occurs when encoding them in a host language like Haskell.

CS is work in progress. There is a prototype implementation of an interpreter
and interactive programming environment which we can use to define and run the
examples from this abstract. We are, however, still in the process of developing
and implementing a type system. In particular, we should statically detect errors
resulting from missing implementations of function clauses.

The name CS is an abbreviation of “CompositionalSemantics”. It is also the
initials of Christopher Strachey, whose pioneering work [30] initiated the devel-
opment of denotational semantics. In Fundamental Concepts in Programming
Languages [31], Strachey wrote that “the urgent task in programming languages
is to explore the field of semantic possibilities”, and that we need to “recognize
and isolate the central concepts” of programming languages. Today, five decades
later, the words still ring true. The CS language aims to address this urgent
task in programming languages, by supporting the definition of reusable (cen-
tral) programming language concepts, via compositional denotation functions
that map the syntax of programming languages to their meaning.

2 CS by Example

In this section, we give an example-driven introduction to CS’s features.

4 Cas van der Rest and Casper Bach Poulsen

2.1 Data Types and Functions

CS is a functional programming language, and comes equipped with algebraic
data types and pattern matching functions. We declare a new inductive data
type for natural numbers as follows:

data Nat = Zero | Suc Nat

We can write functions over inductive data types by pattern matching, using a
“pipe” (|) symbol to separate clauses:

fun double : Nat → Nat where
| Zero 7→ Zero
| (Suc n) 7→ Suc (Suc (double n))

Not all types are user-declared: CS also offers built-in types and syntax for
integers, lists, tuples, and strings.

fun length : List a → Int where
| [] 7→ 0
| (:: xs) 7→ 1 + length xs

fun zip : List a → List b → List (a ∗ b) where
| [] 7→ []
| (x :: xs) (y :: ys) 7→ (x , y) :: zip xs ys

Both length and zip are polymorphic in the type of elements stored in the in-
put list(s). Functions implicitly generalize over any free variables in their type
signature.

2.2 Effects and Handlers

CS supports effectful programs by means of effects and handlers in the spirit
of Plotkin and Pretnar [25], adapted to support higher-order operations. The
key idea of the effects-and-handlers approach is to declare the syntax of effectful
operations, and assign a semantics to these operations in a separate handler. Pro-
grams compute values and have side-effects, and operations act as the interface
through which these side effects are triggered.

We declare a new effect Fail with a single operation fail in CS as follows:

effect Fail where
fail : { [Fail] a }

Effects in CS are declared with the effect keyword, and we declare its operations
by giving a list of GADT-style signatures. In this case, the fail operation is
declared to have type { [Fail] a }. We enclose the type of fail in braces ({−})
to indicate that the name fail refers to a suspended computation (Section 2.3).
Suspended computations are annotated with an effect row, enclosed in square

Towards a Language for Defining Resuable Language Components 5

brackets ([−]), denoting the side effects of running the computation. Invoking
the fail operation has Fail as a side effect.

We can use the Fail effect to implement a safe division function that invokes
fail if the divisor is zero.

fun safeDiv : Int → Int → [Fail] Int where
| x 0 7→ fail!
| x y 7→ ...

The postfix exclamation mark to fail is necessary to force the suspended com-
putation. Here, we want to refer to the “action” of failing, rather than the com-
putation itself, following Frank’s [10] separation between “being and doing”. We
elaborate on this distinction in Section 2.3.

A function’s type signature must explicitly indicate its side-effects. In this
case, we annotate the return type of safeDiv with the Fail effect to indicate
that its implementation uses operations of this effect. Removing the annotation
would make the above invocation of fail ill-typed. For functions that have no
side-effects, we may omit its row annotation: a → b is synonymous to a → [] b

Handlers discharge an effect from annotations by assigning a semantics to
its operations. For the Fail effect, we can do this by encoding exceptions in the
Maybe type.

data Maybe a = Just a | Nothing

handler hFail : { [Fail |e] a } → {[e] (Maybe a)} where
| fail k 7→ {Nothing }
| return x 7→ {Just x }

The handler hFail takes a value annotated with the Fail effect, and produces a
Maybe value annotated with the remaining effects e. All free effect row variables
in a signature, like e, are implicitly generalized over. When defining a handler we
must provide a clause for each operation of the handled effect. Additionally, we
must write a return clause that lifts pure values into the domain that encodes
the effect’s semantics. Operation clauses have a continuation parameter (k),
which captures the remainder of the program starting from the current operation.
Handlers may use the continuation parameter to decide how execution should
resume after the current operation is handled. For example, when handing the fail
operation we terminate execution of the program by ignoring this continuation.

We use the continuation parameter in a different way when defining a handler
for a State effect, where s : Set is a parameter of the module in which we define
the effect.

effect State where
| get : [State] s
| put : s → [State] ()

handler hState : { [State|e] a } → s → {[e] (a ∗ s)} where
| get st k 7→ k st st

6 Cas van der Rest and Casper Bach Poulsen

| (put st ′) st k 7→ k () st ′

| return x st 7→ {(x , st)}

For both the get and put operations, we use the continuation parameter k to
implement the corresponding branch in hState. The continuation expects a value
whose type corresponds to the return type of the current operation, and produces
a computation with the same type as the return type of the handler. For the
put operation, for example, this means that k is of type ()→ s → {[e] (a ∗ s)}.
The implementation of hState for get and put then simply invokes k , using the
current state as both the value and input state (get), or giving a unit value and
using the given state st ′ as the input state (put). Effectively, this means that
after handling get or put, execution of the program resumes, respectively with
the same state or an updated state st ′.

2.3 Order of Evaluation, Suspension, and Enactment

Inspired by Frank [10], CS allows effectful computations to be used as if they
were pure values, without having to sequence them. Sub-expressions in CS are
evaluated from left to right, and the side-effects of computational sub-expressions
are evaluated eagerly in that order. For example, consider the following program:

fun f : Int → [Fail] Int where
| n 7→ fail! + n

Here, we use the expression fail! (whose type is instantiated to [Fail] Int) as
the first argument to +, where a value of type Int is expected. This is fine,
because side-effects that occur during evaluation of sub-terms are discharged to
the surrounding context. That is, the side-effects of evaluating computational
sub-terms in the definition of f become side-effects of f itself.

In practice, this means that function application in CS is not unlike program-
ming in an applicative style in Haskell. For instance, when using the previously-
defined handler hFail , which maps the Fail effect to a Maybe, we can informally
understand the semantics of the CS program above as equivalent to the following
Haskell program:

f :: Int → Maybe Int
f n = (+) <$> Nothing <∗> pure n

Equivalently, we could write the following monadic program in Haskell, which
makes the evaluation order explicit.

f :: Int → Maybe Int
f n = do x ← Nothing

y ← pure n
return (x + y)

CS’s eager treatment of side-effects means that effectful computations are not
first-class values, in the sense that we cannot refer to an effectful computation

Towards a Language for Defining Resuable Language Components 7

without triggering its side effects. To treat computations as first-class, we must
explicitly suspend their effects using braces:

fun f ′ : Int → {[Fail] Int } where
| n 7→ {f n }

The function f ′ is no longer a function on Int that may fail, but instead a function
from Int to a computation that returns and Int , but that could also fail. We
indicate a suspended computation in types using braces ({/}), and construct a
suspension at the term level using the same notation.

To enact the side-effects of a suspended computation, we postfix it with an
exclamation mark (!). For example, the expression (f ′ 0)! has type [Fail] Int ,
whereas the expression (f ′ 0) has type {[Fail] Int }. We see the same distinction
with operations declared using the effect keyword. When we write fail, we refer
to the operation in a descriptive sense, and we can treat it like any other value
without having to worry about its side-effects. When writing fail! , on the other
hand, we are really performing the action of abruptly terminating: fail is and
fail! does.

2.4 Modules and Imports

CS programs are organized using modules. Modules are delimited using the
module and end keywords, and their definitions can be brought into scope
elsewhere using the import keyword. All declarations—i.e., data types, func-
tions, effects, and handlers—must occur inside a module.

module A where
fun f : Int → Int where
| n 7→ n + n

end

module B where
import A
fun g : Int → Int where
| n 7→ f n

end

In addition to being an organizational tool, modules play a key role in defining
and composing modular data types and functions.

2.5 Composable Data Types and Functions

In addition to plain algebraic data types and pattern matching functions, de-
clared using the data and fun keywords, CS also supports case-by-case defini-
tions of extensible data types and functions. In effect, CS provides a convenient
surface syntax for working with DTC-style [32] definitions, which relies on an
embedding of the initial algebra semantics [12] of data types to give a semantics

8 Cas van der Rest and Casper Bach Poulsen

to extensible and composable algebraic data types and functions, meaning that
extensible functions have to correspond to a fold [19]. In CS, one can program
with extensible data types and functions in the same familiar way as with their
plain, non-extensible counterparts.

The module system plays an essential role in the definition of composable
data types and functions. That is, modules can inhabit a signature that declares
the extensible types and functions for which that module can give a partial
definition. In a signature declaration, we use the keyword sort to declare an
extensible data type, and the alg keyword to declare an extensible function,
or algebra. By requiring extensible functions to be defined as algebras over the
functor semantics of extensible data types, we enforce by construction that they
correspond to a fold.

As an example, consider the following signature that declares an extensible
data type Expr , which can be evaluated to an integer using eval .

signature Eval where
sort Expr : Set
alg eval : Expr → Int

end

To give cases for Expr and eval , we define modules that inhabit the Eval signa-
ture.

module Lit : Eval where
cons Lit : Int → Expr
case eval (Lit x) 7→ x

end

module Add : Eval where
cons Add : Expr → Expr → Expr
case eval (Add x y) 7→ x + y

end

The cons keyword declares a new constructor for an extensible data type, where
we declare any arguments by giving a GADT-style type signature. We declare
clauses for functions that match on an extensible type using the case keyword.
For every newly declared constructor of an extensible data type, we have an
obligation to supply exactly one corresponding clause for every extensible func-
tion that matches on that type. CS has a coverage checker that checks whether
modules indeed contain all necessary definitions, in order to rule out partiality
resulting from missing patterns. For example, omitting the eval case from either
the module Lit or Add above will result in a static error. Coverage is checked
locally in modules, and preserved when composing signature instances.

In the definition of eval in the module Add , we see the implications of defining
function clauses as algebras. We do not have direct control over recursive calls
to eval . Instead, in case declarations, any recursive arguments to the matched
constructor are replaced with the result of recursively invoking eval on them.

Towards a Language for Defining Resuable Language Components 9

In this case, this implies that x and y do not refer to expressions. Rather, if we
invoke eval on the expression Add e1 e2 , in the corresponding case declaration,
x and y are bound to eval e1 and eval e2 respectively. We could encode the same
example in Haskell as follows, but to use eval on concrete expressions additionally
requires explicit definitions of a type level fixpoint and fold operation. In CS,
this encoding layer is hidden by the language.

data Add e = Add e e
eval :: Add Int → Int
eval (Add x y) = x + y

To compose signature instances we merely have to import them from the
same location.

module Program where
import Lit ,Add

- - Evaluates to 3
fun test : Int = eval (Add (Lit 1) (Lit 2))

end

By importing both the Lit and Add modules, the names Expr and eval will refer
to the composition of the constructors/clauses defined in the imported signature
instances. Here, this means that we can construct and evaluate expressions that
consist of both literals and addition. Furthermore, to add a new constructor into
the mix, we can simply define a new module that instantiates the Eval signature,
and add it to the import list.

To define an alternative interpretation for Expr , we declare a new signature.
In order to reference the sort declaration for Expr , we must import the Eval
signature.

signature Pretty where
import Eval - - brings ’Expr’ into scope

alg pretty : Expr → String
end

We declare cases for pretty by instantiating the newly defined signature, adding
import declarations to bring relevant cons declaration into scope.

module PrettyAdd : Pretty where
import Add - - brings ’Add’ into scope

case pretty (Add s1 s2) = s1 ++ “ + ” ++ s2
end

3 Defining Reusable Language Components in CS

In this section, we demonstrate how to use the features of CS introduced in
the previous section to define reusable language components. We work towards

10 Cas van der Rest and Casper Bach Poulsen

defining a reusable component for function abstraction, which can be composed
with other constructs, and for which we can define alternative implementations.
As an example, we will show that we can use the same component defining
functions with both a call-by-value and call-by-name strategy.

3.1 A Signature for Reusable Components

The first step is to define an appropriate module signature. We follow the same
setup as for the Eval signature in Section 2.5. That is, we declare an extensible
sort Expr , together with an algebra eval that consumes values of type Expr .
The result of evaluation is a Value, with potential side effects e. The side effects
are still abstract in the signature definition. Later, when instantiating the Eval
signature, we may impose constraints on e when implementing clauses of eval
using operations of concrete effects.

signature Eval where
sort Expr : Set
alg eval : Expr → {[e] Value }

end

We will consider the precise definition of Value later in Section 3.3. For now, it
is enough to know that it has a constructor Num : Int → Value that constructs
a value from an integer literal.

3.2 A Language Component for Arithmetic Expressions

Let us start by defining instances of the Eval signature for the expression lan-
guage from the introduction. First, we define a module for integer literals.

module Lit : Eval where
cons Lit : Int → Expr
case eval (Lit n) = {Num n }

end

The corresponding clause for eval simply returns the value n stored inside the
constructor. Because the interpreter expects that we return a suspended compu-
tation, we must wrap n in a suspension, even though it is a pure value. Enacting
this suspension, however, does not trigger any side effects, and as such importing
Lit imposes no constraints on the effect row e.

Next, we define a module Div that implements integer division.

module Div : Eval where
cons Div : Expr → Expr → Expr
case eval (Div m1 m2) = {safeDiv m1 ! m2 ! }

Looking at the implementation of eval in the module Div we notice two things.
First, the recursive arguments to Div have been replaced by the result of call-
ing eval on them, meaning that m1 and m2 are now computations with type

Towards a Language for Defining Resuable Language Components 11

{[e] Int }, and hence we must use enactment before we can pass the result to
safeDiv . Enacting these computations may trigger side effects, so the order in
which sub-expressions are evaluated determines in which order these side ef-
fects occur in the case that expressions contain more than one enactment. Sub-
expressions in CS are evaluated from left to right. Second, the implementation
uses the function safeDiv , defined in Section 2.2, which guards against errors
resulting from division by zero.

The function safeDiv is annotated with the Fail effect, which supplies the fail
operation. By invoking safeDiv in the defintion of eval , which from the definition
of Eval has type Expr → { [e] Int }, we are imposing a constraint on the effect
row e that it contains at least the Fail effect. In other words, whenever we import
the module Div we have to make sure that we instantiate e with a row that has
Fail in it. Consequently, before we can extract a value from any instantiation of
Eval that includes Div , we must apply a handler for the Fail effect.

Since the interpreter now returns a Value instead of an Int , we must modify
safeDiv accordingly. In practice this means that we must check if its arguments
are constructed using the Num constructor before further processing the input.
Since safeDiv already has Fail as a side effect, we can invoke the fail operation
in case an argument was constructed using a different constructor than Num.

3.3 Implementing Functions as a Reusable Effect

CS’s effect system can describe much more sophisticated effects than Fail . The
effect system permits fine-grained control over the semantics of operations that
affect a program’s control flow, even in the presence of other effects. To illus-
trate its expressiveness, we will now consider how to define function abstraction
as a reusable effect, and implement two different handlers for this effect corre-
sponding to a call-by-value and call-by-name semantics. Implementing function
abstraction as an effect is especially challenging since execution of the function
body is deferred until the function is applied. From a handler’s perspective, this
means that the function body and its side effect have to be postponed until a
point beyond its own control, a pattern that is very difficult to capture using
traditional algebraic effects.

We will see shortly how CS addresses this challenge. A key part of the solu-
tion is the ability to define higher-order operations: operations with arguments
that are themselves effectful computations, leaving it up to the operation’s han-
dler to enact the side effects of higher-order arguments. The Fun effect, which
implements function abstraction, has several higher-order operations.

effect Fun where
| lam : String → {[Fun] Value } → {[Fun] Value }
| app : Value → Value → {[Fun] Value }
| var : String → {[Fun] Value }
| thunk : {[Fun] Value } → {[Fun] Value }

The Fun effect defines four operations, three of which correspond to the usual
constructs of the λ-calculus. The thunk operation has no counterpart in the

12 Cas van der Rest and Casper Bach Poulsen

λ-calculus, and postpones evaluation of a computation. It is necessary for eval-
uation to support both a call-by-value and call-by-name evaluation strategy

When looking at the lam and thunk operations, we find that they both have
parameters annotated with the Fun effect. This annotation indicates that they
are higher-order parameters. By allowing higher-order parameters to operations,
effects in CS do not correspond directly to algebraic effects. Instead, to give as
semantics to effects in CS, we must use a flavor of effects that permits higher-
order syntax, such as Latent Effects [7].

As a result, any effects of the computations stored in a closure or thunk are
postponed, leaving it up to the handler to decide when these take place.

Using the Fun effect To define a langue with function abstractions using the
Fun effect, we define an instance of the Eval signature that defines constructors
Abs, App, and Var for Expr . We define eval for these constructors by mapping
onto the corresponding operation.

module Lambda : Eval where
cons Abs : String → Expr → Expr
| App : Expr → Expr → Expr
| Var : String → Expr

case eval (Abs x m) = lam x m
| eval (App m1 m2) = app m1 ! (thunk m2)!
| eval (Var x) = var x

end

Crucially, in the case for Abs we pass the effect-annotated body m, which has
type { [e] Value }, to the lam operation directly without extracting a pure value
first. This prevents any effects in the body of a lambda from being enacted at the
definition site, and instead leaves the decision of when these effects should take
place to the used handler for the Fun effect. Similarly, in the case for App, we
pass the function argument m2 to the thunk operation directly, postponing any
side effects until we force the constructed thunk. The precise moment at which we
will force the thunk constructed for function arguments will depend on whether
we employ a call-by-value or call-by-name strategy. We must, however, enact the
side effects of evaluating the function itself (i.e., m1), because the app operation
expects its arguments to be a pure value.

We define the call-by-value and call-by-name handlers for Fun in a new mod-
ule, which also defines the type of values, Value, for our language. To keep the
exposition simple, we do not define Value as an extensible sort, but it is possible
to do so in CS.

Values in this language are either numbers (Num), function closures (Clo),
or thunked computations (Thunk). We define the type of values together in the
same module as the handler(s) for the Fun effect. This module is parameter-
ized over an effect row e, that denotes the remaining effects that are left after
handling the Fun effect. In this case, e is a module parameter to express that

Towards a Language for Defining Resuable Language Components 13

handler hCBV : { [Fun|e] Value }
→ Env → {[Fail |e] Value } where

| (lam x f) nv k 7→ k (Clo x f nv) nv

| (app (Clo x f nv ′) (Thunk t)) nv k 7→ k (f ((x , t!) :: nv ′))! nv
| (app) 7→ {fail! }
| (var x) nv k 7→ k (lookup nv x)! nv
| (thunk f) nv k 7→ k (Thunk {f nv }) nv
| return v nv 7→ {v }

Figure 1. A Handler for the Fun effect, implementing a call-by-value semantics for
function arguments. The gray highlights indicate where thunks constructed for function
arguments are forced.

the remaining effects in the handlers that we will define coincide with the ef-
fect annotations of the computations stored in the Clo and Thunk constructors,
allowing us to run these computations in the handler.

module HLambda (e : Effects) where

import Fun

type Env = List (String ∗Value)
data Value = Num Int

| Clo String (Env → {[Fail |e] Value }) Env
| Thunk ({[Fail |e] Value })

- - ... (handlers for the Fun effect) ...
end

Call-by-value We are now ready to define a handler for the Fun effect that im-
plements a call-by-value evaluation strategy. Figure 1 shows its implementation.

The return case is unremarkable: we simply ignore the environment nv and
return the value v . The cases for lam and thunk are similar, as in both cases
we do not enact the side effects associated with the stored computation f , but
instead wrap this computation in a Closure or Thunk which is passed to the
continuation k . For variables, we resolve the identifier x in the environment and
pass the result to the continuation.

A call-by-value semantics arises from the implementation of the app case. The
highlights (e.g., t!) indicate where the thunk we constructed for the function
argument in eval is forced. In this case, we force this argument thunk immedi-
ately when encountering a function application, meaning that any side effects of
the argument take place before we evaluate the function body.

Call-by-name The handler in Figure 2 shows an implementation of a call-by-
name semantics for the Fun effect. The only case that differ from the call-by-
value handler in Figure 1 are the app and var cases.

14 Cas van der Rest and Casper Bach Poulsen

handler hCBN : {[Fun|e] Value }
→ Env → {[Fail |e] Value } where

| (lam x f) nv k 7→ k (Clo x f nv) nv
| (app (Clo x f nv ′) v) nv k 7→ k (f ((x , v) :: nv ′))! nv
| (app) 7→ {fail! }
| (var x) nv k 7→match (lookup x nv)! with

| (Thunk t) 7→ k t! nv
| v 7→ k v nv
end

| (thunk f) nv k 7→ k (Thunk {f nv }) nv
| return v nv 7→ {v }

Figure 2. A Handler for the Fun effect, implementing a call-by-name semantics for
function arguments. The gray highlights indicate where thunks constructed for function
arguments are forced.

In the case for app, we now put the argument thunk in the environment
immediately, without forcing it first. Instead, in the case for var, we check if the
variable we look up in the environment is a Thunk . If so, we force it and pass
the resulting value to the continuation. In effect, this means that for a variable
that binds an effectful computation, the associated side effects take place every
time we use that variable, but not until we reference it for the first time.

3.4 Example Usage

To illustrate how to use the reusable components defined in this section, and the
difference between the semantics implemented by hCBV (Figure 1) and hCBN
(Figure 2), we combine the Lambda module with the modules for Div and Lit .
Figure 3 shows the example.

When importing the modules HLambdaCBV and HLambdaCBN , we pass an
explicit effect row that corresponds to the effects that remain after handling the
Fun effect. Because we handle Fun after handling the Fail effect introduced by
Div , we pass the empty row. To evaluate expressions, we have to invoke hFail
twice: first to handle the instance of the Fail effect introduced by eval for the
Div constructor, and later to handle the Fail instance introduced by applying
hCBV /hCBN . Consequently, the result of evaluating is a nested Maybe, where
the inner instance indicates errors resulting from division by zero, and the outer
instance errors thrown by the handler. Evaluating result1 and result2 shows
the difference between using the call-by-value and call-by-name semantics for
functions.

Towards a Language for Defining Resuable Language Components 15

module Test where
import Prelude

,Fun
,Fail

,HLambdaCBV []
,HLambdaCBN []

,Lambda
,Lit
,Div

fun execCBV : Expr → Maybe (Maybe Value) where
| e 7→ (hFail (hCBV (hFail (eval e)) []))!

fun execCBN : Expr → Maybe (Maybe Value) where
| e 7→ (hFail (hCBN (hFail (eval e)) []))!

fun expr : Expr = App (Abs “x” (Lit 10)) (Div (Lit 5) (Lit 0))

- - evaluates to Just Nothing
fun result1 : Maybe (Maybe Value) = execCBV expr

- - evaluates to Just (Just (Num 10))
fun result2 : Maybe (Maybe Value) = execCBN expr

end

Figure 3. Examples of different outcomes when using a call-by-value or call-by-name
evaluation strategy.

4 Related Work

Effect Semantics. Monads, originally introduced by Moggi [20] have long been
the dominant approach to modelling programs with side effects. They are, how-
ever, famously hard to compose, leading to the development of monad trans-
formers [17] as a technique for building monads from individual definitions of
effects. Algebraic effects [24] provide a more structured approach towards this
goal, where an effect is specified in terms of the operations that we can use
to interact with it. The behaviour of these operations is governed by a set of
equations that specify its well-behavedness. Later, Plotkin and Pretnar [25] ex-
tended the approach with handlers, which define interpretations of effectful op-
erations by defining a homomorphism from a free model that trivially inhabits
the equational theory (i.e., syntax) to a programmer-defined domain, making
the approach attractive for implementing effects as well. Perhaps the most well-
known implementation of algebraic effects and handlers is the free monad [14],
and this implementation is often taken as the semantic foundation of languages
with support for effect handlers. Schrijvers et al. [29] showed that algebraic
effects implemented using the free monad correspond to a sub-class of monad-
transformers. The algebraic effects and handlers approach provides a solid formal

16 Cas van der Rest and Casper Bach Poulsen

framework for understanding effectful programs in which we intend to ground
CS’ semantics of effects and handlers.

A crucial difference between CS’ effects and handlers, and the original for-
mulation by Plotkin and Pretnar [25], is the support for higher-order operations.
Although it is possible to implement such operations in algebraic effects by
defining them as handlers, this breaches the seperation between the syntax and
semantics of effects that underpins CS’ design. Scoped Effects [35] were proposed
as an alternative flavor of algebraic effects that supports higher-order syntax, re-
covering a separation between the syntax semantics of effects for higher-order
operations. In subsequent work, Piróg et al. [23] adapted the categorical formu-
lation of algebraic effects to give Scoped Effects a similar formal underpinning.
Unfortunately, Scoped Effects is not suitable out-of-the-box as a model for effects
and handlers in CS, because it cannot readily capture operations that arbitrar-
ily postpone the execution of their higher-order arguments, such as lam. Latent
effects were developed by Van den Berg et al. [7] as a refinement of scoped ef-
fects that solves this issue. Key to their approach is a latent effect functor, which
explicitly tracks semantic residue of previously-installed handlers, allowing for a
more fine-grained specification of the types of the computational arguments of
operations. With Latent Effects, it is possible to capture function abstraction as
a higher-order operation. It remains future work to formulate a precise model
of effectful computation for CS, and to establish if and how CS’ effect handlers
correspond to Latent Effects.

Implementations of Algebraic Effects and Handlers. There are many languages
with support for algebraic effects and handlers. Perhaps the most mature is
Koka [15], which features a Hindley/Milner-style row-polymorphic type system.
While we borrow from Frank [10] a CBPV-inspired [16] distinction between
computations and values, Koka is purely call-by-value, and only functions can
be effectful. Frank [10], on the other hand, does maintain this distinction be-
tween values and computations. Its type system relies on an ambient ability and
implicit row polymorphism to approximate effects. Handlers are not first-class
constructs in Frank. Instead, functions may adjust the ambient ability of their
arguments by specifying the behaviour of operations. This provides some addi-
tional flexibility over built-in handers, for example by permitting multihandlers
that handle multiple effects at once. Both Koka and Frank lack native support
for higher order effects, thus higher-order operations must be encoded in terms
of handlers. This means that it is not possible to define higher order opera-
tions while maintaining the aforementioned distinction between the syntax and
semantics of effects.

Eff [6] is a functional language with support for algebraic effects and handlers,
with the possibility to dynamically generate new operations and effects. In later
work, Bauer and Pretnar [5] developed a type-and-effect system for Eff, together
with an inference algorithm [26]. The language Links [18] employs row-typed
algebraic effects in the context of database programming. Their system is based
on System F extended with effect rows and row polymorphism, and limits effect-
ful computations to functions similar to Koka. Importantly, their system tracks

Towards a Language for Defining Resuable Language Components 17

effects using Rémy-style rows [27], maintaining so-called presence types that can
additionally express an effect’s absence from a computation. Brachthäuser et
al. [9] presented Effekt as a more practical implementation of effects and han-
dlers, using capability based type system where effect types express a set of
capabilities that a computation requires from its context.

Semantics of Composable Data Types and Functions. We give a semantics to ex-
tensible data types and functions in CS using the initial algebra semantics [12]
of an underlying signature functor. Data Types à la Carte (DTC) [32] solves the
expression problem in Haskell by embedding this semantics into the host lan-
guage. In later work, Bahr [2] and Bahr and Hvitved [3,4] extended the approach
to improve its expressiveness and flexibility.

DTC, like any approach that relies on initial algebra semantics, limits the
modular definition of functions to functions that correspond to a fold over the
input data. While this may seem restrictive, in practice more complicated traver-
sals can often be encoded as a fold, such as paramorphisms [19] or some classes of
attribute grammars [13]. While CS currently only has syntax for plain algebras
and folds, we plan to extend the syntax for working with extensible data types
and functions to accomodate a wider range of traversals in the future.

Row Types. While a concrete design for CS’ type system is still emerging, we
anticipate that it will make heavy use of row types, both for tracking effects and
typing extensible types and functions. While to the best of our knowledge no
type system exists with this combination of features, all the ingredients are there
in the literature. Originally, row types were incepted as a means to model inher-
itance in object-oriented languages [34,27], and later extensible records [8,11].
More recently, they also gained popularity in the form of row-based effect sys-
tems with the development of languages such as Koka [15] and Links [18]. Their
use for typing extensible algebraic data types and pattern matching functions
is less well-studied. For the most part, row types in this context exist implic-
itly as part of encoding techniques such as DTC [32], where we can view the
use of signature functors and functor co-products as an embedding of row-typed
extensible variants in the host language’s type system. Various refinements of
DTC [21,28,2] make this connection more explicit by using type-level lists to
track the composition of extensible data. A notable exception is the Rose [22]
language, which has a row-based type system with built-in support for extensible
variants and pattern matching function.

5 Future Work

CS is an ongoing research project. Here, we briefly summarize the current state,
and some of the challenges that still remain.

While we can implement the examples from this paper in the current pro-
totype implementation of CS, the language still lacks a complete specification.
As such, the immediate next steps are to develop specifications of the type sys-
tem and operational semantics. This requires us to address several open research

18 Cas van der Rest and Casper Bach Poulsen

questions, such as giving a semantics to the flavor of higher-order effects used
by CS, and applying row types to type CS’ extensible data types and functions.
While the Rose language supports extensible variants, this support is limited to
non-recursive types. For CS, we would need to adapt their type sytem to sup-
port recursive extensible data types as well. Designing a small core calculus into
which CS can be translated could be potential way to explore these questions,
making a formalization of the language in a proof assistant more attainable, by
formalizing the core language. Further down the line, we also intend to explore
a denotational model for effect handlers in CS, giving the language a more solid
formal foundation, similar to existing programming languages based on algebraic
effects and handlers.

In the future, we also hope to enforce stronger properties about specifica-
tions defined in CS through the language’s type system. The prime example
are intrinsically-typed definitional interpreters [1], which specify a language’s
operational semantics such that it is type sound by construction.

6 Conclusion

Reusable programming language components have the potential to significantly
reduce the amount of time, effort, and expertise needed for developing program-
ming languages. In this paper, we presented CS, a functional meta-language
for defining reusable programming language components. CS enables the defin-
tion of reusable language components using algebraic data types and pattern
matching functions, by supporting extensible data types and functions, which
are defined on a case-by-case basis. Additionally, CS features built-in support
for effects and handlers for defining the side effects of a language. The flavor of
effects and handlers implemented by CS supports higher-order operations, and
can be used to define features that affect a program’s control flow, such as func-
tion abstraction, as a reusable effect. We illustrated how these features can be
used for developing reusable programming language components by defining a
component for function abstraction, which can be composed with other language
components and evaluated using both a call-by-value and call-by-name strategy.

References

1. Augustsson, L., Carlsson, M.: An exercise in dependent types: A well-typed inter-
preter. In: In Workshop on Dependent Types in Programming, Gothenburg (1999)

2. Bahr, P.: Composing and decomposing data types: a closed type families im-
plementation of data types à la carte. In: Magalhães, J.P., Rompf, T. (eds.)
Proceedings of the 10th ACM SIGPLAN workshop on Generic programming,
WGP 2014, Gothenburg, Sweden, August 31, 2014. pp. 71–82. ACM (2014),
https://doi.org/10.1145/2633628.2633635

3. Bahr, P., Hvitved, T.: Compositional data types. In: Järvi, J., Mu, S. (eds.)
Proceedings of the seventh ACM SIGPLAN workshop on Generic programming,
WGP@ICFP 2011, Tokyo, Japan, September 19-21, 2011. pp. 83–94. ACM (2011),
https://doi.org/10.1145/2036918.2036930

https://doi.org/10.1145/2633628.2633635
https://doi.org/10.1145/2036918.2036930

Towards a Language for Defining Resuable Language Components 19

4. Bahr, P., Hvitved, T.: Parametric compositional data types. In: Chapman, J.,
Levy, P.B. (eds.) Proceedings Fourth Workshop on Mathematically Structured
Functional Programming, MSFP@ETAPS 2012, Tallinn, Estonia, 25 March 2012.
EPTCS, vol. 76, pp. 3–24 (2012), https://doi.org/10.4204/EPTCS.76.3

5. Bauer, A., Pretnar, M.: An effect system for algebraic effects and handlers.
Log. Methods Comput. Sci. 10(4) (2014), https://doi.org/10.2168/LMCS-10(4:
9)2014

6. Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers. J. Log.
Algebraic Methods Program. 84(1), 108–123 (2015), https://doi.org/10.1016/
j.jlamp.2014.02.001

7. van den Berg, B., Schrijvers, T., Poulsen, C.B., Wu, N.: Latent effects for reusable
language components. In: Oh, H. (ed.) Programming Languages and Systems -
19th Asian Symposium, APLAS 2021, Chicago, IL, USA, October 17-18, 2021,
Proceedings. Lecture Notes in Computer Science, vol. 13008, pp. 182–201. Springer
(2021), https://doi.org/10.1007/978-3-030-89051-3_11

8. Blume, M., Acar, U.A., Chae, W.: Extensible programming with first-class cases.
In: Reppy, J.H., Lawall, J.L. (eds.) Proceedings of the 11th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2006, Portland, Oregon,
USA, September 16-21, 2006. pp. 239–250. ACM (2006), https://doi.org/10.

1145/1159803.1159836

9. Brachthäuser, J.I., Schuster, P., Ostermann, K.: Effects as capabilities: ef-
fect handlers and lightweight effect polymorphism. Proc. ACM Program. Lang.
4(OOPSLA), 126:1–126:30 (2020), https://doi.org/10.1145/3428194

10. Convent, L., Lindley, S., McBride, C., McLaughlin, C.: Doo bee doo bee doo. J.
Funct. Program. 30, e9 (2020), https://doi.org/10.1017/S0956796820000039

11. Gaster, B.R., Jones, M.P.: A polymorphic type system for extensible records and
variants. Tech. rep., Citeseer (1996)

12. Johann, P., Ghani, N.: Initial algebra semantics is enough! In: Rocca, S.R.D.
(ed.) Typed Lambda Calculi and Applications, 8th International Conference,
TLCA 2007, Paris, France, June 26-28, 2007, Proceedings. Lecture Notes in Com-
puter Science, vol. 4583, pp. 207–222. Springer (2007), https://doi.org/10.1007/
978-3-540-73228-0_16

13. Johnsson, T.: Attribute grammars as a functional programming paradigm. In:
Kahn, G. (ed.) Functional Programming Languages and Computer Architecture,
Portland, Oregon, USA, September 14-16, 1987, Proceedings. Lecture Notes in
Computer Science, vol. 274, pp. 154–173. Springer (1987), https://doi.org/10.
1007/3-540-18317-5_10

14. Kammar, O., Lindley, S., Oury, N.: Handlers in action. In: Morrisett, G., Uustalu,
T. (eds.) ACM SIGPLAN International Conference on Functional Programming,
ICFP’13, Boston, MA, USA - September 25 - 27, 2013. pp. 145–158. ACM (2013),
https://doi.org/10.1145/2500365.2500590

15. Leijen, D.: Type directed compilation of row-typed algebraic effects. In: Castagna,
G., Gordon, A.D. (eds.) Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris, France, January 18-20,
2017. pp. 486–499. ACM (2017), https://doi.org/10.1145/3009837.3009872

16. Levy, P.B.: Call-By-Push-Value: A Functional/Imperative Synthesis, Semantics
Structures in Computation, vol. 2. Springer (2004)

17. Liang, S., Hudak, P., Jones, M.P.: Monad transformers and modular interpreters.
In: Cytron, R.K., Lee, P. (eds.) Conference Record of POPL’95: 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San

https://doi.org/10.4204/EPTCS.76.3
https://doi.org/10.2168/LMCS-10(4:9)2014
https://doi.org/10.2168/LMCS-10(4:9)2014
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1007/978-3-030-89051-3_11
https://doi.org/10.1145/1159803.1159836
https://doi.org/10.1145/1159803.1159836
https://doi.org/10.1145/3428194
https://doi.org/10.1017/S0956796820000039
https://doi.org/10.1007/978-3-540-73228-0_16
https://doi.org/10.1007/978-3-540-73228-0_16
https://doi.org/10.1007/3-540-18317-5_10
https://doi.org/10.1007/3-540-18317-5_10
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/3009837.3009872

20 Cas van der Rest and Casper Bach Poulsen

Francisco, California, USA, January 23-25, 1995. pp. 333–343. ACM Press (1995),
https://doi.org/10.1145/199448.199528

18. Lindley, S., Cheney, J.: Row-based effect types for database integration. In: Pierce,
B.C. (ed.) Proceedings of TLDI 2012: The Seventh ACM SIGPLAN Workshop on
Types in Languages Design and Implementation, Philadelphia, PA, USA, Saturday,
January 28, 2012. pp. 91–102. ACM (2012), https://doi.org/10.1145/2103786.
2103798

19. Meijer, E., Fokkinga, M.M., Paterson, R.: Functional programming with bananas,
lenses, envelopes and barbed wire. In: Hughes, J. (ed.) Functional Program-
ming Languages and Computer Architecture, 5th ACM Conference, Cambridge,
MA, USA, August 26-30, 1991, Proceedings. Lecture Notes in Computer Science,
vol. 523, pp. 124–144. Springer (1991), https://doi.org/10.1007/3540543961_7

20. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991),
https://doi.org/10.1016/0890-5401(91)90052-4

21. Morris, J.G.: Variations on variants. In: Lippmeier, B. (ed.) Proceedings of
the 8th ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC,
Canada, September 3-4, 2015. pp. 71–81. ACM (2015), https://doi.org/10.

1145/2804302.2804320

22. Morris, J.G., McKinna, J.: Abstracting extensible data types: or, rows by any
other name. Proc. ACM Program. Lang. 3(POPL), 12:1–12:28 (2019), https://
doi.org/10.1145/3290325

23. Piróg, M., Schrijvers, T., Wu, N., Jaskelioff, M.: Syntax and semantics for opera-
tions with scopes. In: Dawar, A., Grädel, E. (eds.) Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK,
July 09-12, 2018. pp. 809–818. ACM (2018), https://doi.org/10.1145/3209108.
3209166

24. Plotkin, G.D., Power, J.: Algebraic operations and generic effects. Appl. Categor-
ical Struct. 11(1), 69–94 (2003), https://doi.org/10.1023/A:1023064908962

25. Plotkin, G.D., Pretnar, M.: Handlers of algebraic effects. In: Castagna, G. (ed.)
Programming Languages and Systems, 18th European Symposium on Program-
ming, ESOP 2009, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceed-
ings. Lecture Notes in Computer Science, vol. 5502, pp. 80–94. Springer (2009),
https://doi.org/10.1007/978-3-642-00590-9_7

26. Pretnar, M.: Inferring algebraic effects. Log. Methods Comput. Sci. 10(3) (2014),
https://doi.org/10.2168/LMCS-10(3:21)2014

27. Rémy, D.: Typechecking records and variants in a natural extension of ML. In:
Conference Record of the Sixteenth Annual ACM Symposium on Principles of
Programming Languages, Austin, Texas, USA, January 11-13, 1989. pp. 77–88.
ACM Press (1989), https://doi.org/10.1145/75277.75284

28. d. S. Oliveira, B.C., Mu, S., You, S.: Modular reifiable matching: a list-of-functors
approach to two-level types. In: Lippmeier, B. (ed.) Proceedings of the 8th ACM
SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada, Septem-
ber 3-4, 2015. pp. 82–93. ACM (2015), https://doi.org/10.1145/2804302.

2804315

29. Schrijvers, T., Piróg, M., Wu, N., Jaskelioff, M.: Monad transformers and modular
algebraic effects: what binds them together. In: Eisenberg, R.A. (ed.) Proceedings
of the 12th ACM SIGPLAN International Symposium on Haskell, Haskell@ICFP
2019, Berlin, Germany, August 18-23, 2019. pp. 98–113. ACM (2019), https://
doi.org/10.1145/3331545.3342595

https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/2103786.2103798
https://doi.org/10.1145/2103786.2103798
https://doi.org/10.1007/3540543961_7
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/2804302.2804320
https://doi.org/10.1145/2804302.2804320
https://doi.org/10.1145/3290325
https://doi.org/10.1145/3290325
https://doi.org/10.1145/3209108.3209166
https://doi.org/10.1145/3209108.3209166
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.2168/LMCS-10(3:21)2014
https://doi.org/10.1145/75277.75284
https://doi.org/10.1145/2804302.2804315
https://doi.org/10.1145/2804302.2804315
https://doi.org/10.1145/3331545.3342595
https://doi.org/10.1145/3331545.3342595

Towards a Language for Defining Resuable Language Components 21

30. Strachey, C.: Towards a formal semantics (1966)
31. Strachey, C.S.: Fundamental concepts in programming languages. High. Or-

der Symb. Comput. 13(1/2), 11–49 (2000), https://doi.org/10.1023/A:

1010000313106

32. Swierstra, W.: Data types à la carte. J. Funct. Program. 18(4), 423–436 (2008),
https://doi.org/10.1017/S0956796808006758

33. Wadler, P.: The expression problem. http://homepages.inf.ed.ac.uk/wadler/

papers/expression/expression.txt (1998), accessed: 2022-04-04
34. Wand, M.: Type inference for record concatenation and multiple inheritance. In:

Proceedings of the Fourth Annual Symposium on Logic in Computer Science (LICS
’89), Pacific Grove, California, USA, June 5-8, 1989. pp. 92–97. IEEE Computer
Society (1989), https://doi.org/10.1109/LICS.1989.39162

35. Wu, N., Schrijvers, T., Hinze, R.: Effect handlers in scope. In: Swierstra, W. (ed.)
Proceedings of the 2014 ACM SIGPLAN symposium on Haskell, Gothenburg,
Sweden, September 4-5, 2014. pp. 1–12. ACM (2014), https://doi.org/10.1145/
2633357.2633358

https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1017/S0956796808006758
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://doi.org/10.1109/LICS.1989.39162
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1145/2633357.2633358

	Towards a Language for Defining Reusable Programming Language Components

