
Towards a Language for Defining Reusable
Programming Language Components

(Project Paper, Extended Abstract)

Cas van der Rest1 and Casper Bach Poulsen2

c.r.vanderrest@tudelft.nl1 c.b.poulsen@tudelft.nl2

Delft University of Technology, Delft, The Netherlands

1 Introduction

Our goal is to build reusable programming language components from algebraic
data types and pattern matching functions. Most functional programming lan-
guages, however, are less than ideal for this purpose, because they lack built-in
solutions for the Expression Problem [13]: while adding functionality to existing
data types is easily done by writing a new function, we cannot extend data def-
initions themselves without modifying existing code. For instance, consider the
following implementation of a small expression language in Haskell:

data Expr = Lit Int | Div Expr Expr

eval :: Expr → Maybe Int
eval (Lit x) = return x
eval (Div e1 e2) = do {x ← eval e1 ; y ← eval e2 ; safeDiv x y }

To extend this expression language with support for pretty-printing, we can
simply define a new function pretty :: Expr → String . But what if we want to
extend it with a new construct corresponding to, for example, addition? Such a
change would require us to go back and add a constructor Add to the definition of
Expr , and extend all functions that match on Expr with new clauses accordingly.

This problem is amplified if we want to extend Expr with constructs that
introduce new side-effects other than exceptions arising from division by zero. In
that case, we also have to modify eval ’s type signature, and potentially even the
implementation of clauses for existing constructors. Clearly, if we intend Expr
and eval as reusable components this is an undesirable situation.

We improve upon this state of affairs by introducing CS (working title),
a functional meta-language for defining reusable programming language compo-
nents. In CS, we can define components that describe part of a language’s syntax,
semantics or side effects, such that they can safely be composed into larger lan-
guages without requiring modification of existing code. The key features of CS
that make this possible are (1) built-in support for per-case definitions of data
types and pattern matching functions in the style of Data Types à la Carte [12],
and (2) an effect system based on Plotkin and Pretnar’s effect handlers [9] for
the modular definition of side-effects.

CS is work in progress. There is a prototype implementation of an interpreter
and interactive programming environment which we can us to define and run the
examples from this abstract. We are, however, still in the process of developing
and implementing a type system. In particular, we should statically prevent
errors resulting from missing implementations of function clauses.

The name CS is an abbreviation of “Compositional Semantics”. It is also
the initials of Christopher Strachey, whose pioneering work [10] initiated the de-
velopment of denotational semantics. In Fundamental Concepts in Programming
Languages [11], Strachey wrote that “the urgent task in programming languages
is to explore the field of semantic possibilities”, and that we need to “recognize
and isolate the central concepts” of programming languages. Today, five decades
later, the words still ring true. The CS language aims to address this urgent
task in programming languages, by supporting the definition of reusable (cen-
tral) programming language concepts, via compositional denotation functions
that map the syntax of programming languages to their meaning.

2 CS by Example

To showcase CS’s design, we consider how to define the previous example as a
reusable language component in CS.

Signatures and Modules The first step is to define a signature that announces
the existence of an extensible data type Expr , and extensible function eval :

signature Eval (FX : Effects) where
sort Expr : Set
alg eval : Expr → {[FX] Int }

end

The braces (‘{’ and ‘}’) in the type of eval indicate that it returns a suspended
computation. Effects in CS happen eagerly, meaning that the side-effects of an
expression occur then and there unless we suspend them. For eval , we do want
suspension, leaving it up to the caller to decide when its effects take place.

The Eval signature has an effect row parameter, FX , describing which side
effects may occur during evaluation. With the alg keyword, we allude to the
initial algebra semantics for data types [5] on which CS’s semantics for extensible
types and functions is based. Indeed, we will see shortly that function clauses
for eval are not implemented as regular functions, but as algebras instead.

We inhabit Expr and eval by defining modules that instantiate the Eval
signature. We do this for the Lit and Div constructors:

module Lit : Eval where
cons Lit : Int → Expr
case eval (Lit n) = {n }

end

module Div : Eval where
cons Div : Expr → Expr → Expr
case eval (Div m1 m2) = {x ← m1 ; y ← m2 ; safeDiv x y }

Let us take a closer look at the implementation of eval in the module Div .
There are two things worth noting here. First, we do not invoke eval recursively
on the sub-expressions m1 and m2 . This is because we define function clauses as
algebras, meaning that we assume that any recursive subtrees have already been
replaced with the result of evaluating those subtrees. Second, the implementation
uses the function safeDiv that guards against errors resulting from devision by
zero. We find its implementation later on in the same module:

fun safeDiv : Int → Int → [Abort] Int where
| x 0 = abort !
| x y = ...

end

The function safeDiv is annotated with the Abort effect, which supplies the abort
operation, signalling abrupt termination. By invoking safeDiv in the defintion
of eval , which from the definition of Eval has type Expr → [FX] Int , we are
implicitly imposing a constraint on the module parameter FX that it contains
at least the Abort effect. In other words, whenever we import the module Div
we better make sure that we instantiate FX with a row that has Abort in it.

We must say a few words about the braces (‘{’ and ‘}’) that surround the
implementation of eval for Div . Their purpose is to introduce a suspended com-
putation. The opposite of suspension is enactment, which is denoted by postfix-
ing with an exclamation mark (!). We see it in action in the definition of safeDiv
(indeed, we abort immediately). Our use of braces is inspired by the similar
language feature found in Frank [3].

Now, how do we use these modules to construct an interpreter for a language
with integer literals and division? In CS, it is not necessary to explicitly compose
constructors and clauses into data types and functions. Instead, the language
manages this for us by automatically merging constructors and clauses whenever
we import multiple instances of the same signature.

module Test where
import Abort

,Eval [Abort]
,Lit ,Div

fun run : Expr → [Abort] Int where
| e = eval e

- - Evaluates to 3
fun test : [Abort] Int

= run (Div (Lit 6) (Lit 2))
end

We are allowed to invoke eval in the body of run here, because the sole constraint
(imposed by importing Div) on its effect annotation of is that it contains Abort .

When importing the Eval signature we instantiated its effect row parameter with
the singleton row [Abort], which satisfies this constraint.

Effects and Handlers To use the run function, we must first invoke a handler
for the Abort effect. To understand handlers, let us look at the module that
implements the Abort effect together with its handler.

module Abort where
import Prelude

effect Abort where
| abort : [Abort] a

handler hAbort : [Abort | FX] a → [FX] (Maybe a) where
| abort k = Nothing
| return x = Just x

end

With the effect keyword we declare a new effect together with its operations. Ef-
fect declarations are much like data type declarations, but instead of constructors
they define the different ways in which we can construct effectful computations
containing a particular effect.

We use the handler keyword to declare a handler for the Abort effect, hAbort ,
which removes it from the annotation of an effectful computation. The type of
hAbort contains a free type variable (a) and a free row variable (FX), both of
which are implicitly universally quantified, as is any free type or row variable.
The result of handling the Abort effect is a Maybe value. Maybe, along with its
constructors Just and Nothing is defined in the Prelude module.

Handlers must have a branch for each operation of the handled effect, plus
a return branch that decorates pure values to match the handler’s co-domain
type. All branches corresponding to operations have an extra parameter that
binds the continuation, representing the computation that succeeds the operation
we are currently handling. By convention, we name this parameter k . In the
abort case of hAbort , however, we ignore this continuation altogether, because
the semantics of this operation should correspond to abrupt termination.

We use the continuation parameter in a more interesting way when defining
a handler for a State effect:

module State (s : Set) where
effect State where
| get : [State] s

| put : s → [State] ()

handler hState : [State | FX] a → s → [FX] (a×s) where
| get st k = k st st

| (put st ′) st k = k () st ′

| return x st = (x , st)
end

For both the get and put operations, we use the continuation parameter k to
implement the corresponding branch in hAbort . The continuation expects a value
whose type corresponds to the return type of the current operation, and produces
a computation with the same type as the co-domain type of the handler. For the
put operation, for example, this means that k is of type ()→ s → [FX] (a×s).
The implementation of hState for get and put then simply invokes k , using the
current state as both the value and input state (get), or giving a unit value and
using the given state st ′ as the input state (put).

2.1 Implementing Functions as a Reusable Effect

CS’s effect system can describe much more sophisticated effects than Abort and
State, as it permits fine-grained control over the semantics of operations that
affect a program’s control flow, even in the presence of other effects. To illus-
trate its expressiveness, we will now consider how to define function abstraction
as a reusable effect, and implement two different handlers for this effect corre-
sponding to a call-by-value and call-by-name semantics. We start by declaring
the Abstracting effect and its operations:

effect Abstracting where
| lam : String → [Abstracting] Value → [Abstracting] Value
| app : Value → Value → [Abstracting] Value

| var : String → [Abstracting] Value
| thunk : [Abstracting] Value → [Abstracting] Value

The Abstracting effect has four operations, of which three correspond to the usual
constructs of the λ-calculus. The thunk operation has no syntactical counterpart,
but will be used for implementing a call-by-value and call-by-name evaluation
strategy. Value is the type of values in our language; we will see shortly how it
is defined.

When looking at the lam and thunk operations, we find that they both
have parameters annotated with the Abstracting effect. This annotation indi-
cates that they construct effectful computations from effectful computations, a
pattern sometimes referred to as higher-order effects. Effectively, this means that
any effects belonging to a value we wrap in a closure or thunk are postponed,
leaving it up to the handler to decide when these take place.

Using the Abstracting effect To define a langue with function abstractions using
the Abstracting effect, we define constructors Abs, App, and Var for Expr , and
evaluate them by mapping onto the corresponding operation.

module Lambda : Eval where
cons Abs : String → Expr → Expr
| App : Expr → Expr → Expr
| Var : String → Expr

case eval (Abs x m) = {lam x m }
| eval (App m1 m2) = {t ← thunk m2 ; app m1! t }
| eval (Var x) = {var x }

end

Crucially, in the case for Abs we pass the effect-annotated body m, which has
type { [FX] Value }, to the lam operation directly without extracting a pure value
first. This prevents any effects in the body of a lambda from being enacted at the
definition site, and instead leaves the decision of when these effects should take
place to the used handler for the Abstracting effect. Similarly, in the case for App,
we pass the function argument m2 to the thunk operation directly, postponing
any side-effects until we force the constructed thunk. We do, however, enact the
side-effects of evaluating the function itself (i.e., m1), because the app operation
expects its arguments to be a pure value.

We define the call-by-value and call-by-name handlers for Abstracting in a
new module, that also defines the type of values for our language. Consequently,
we adapt the Eval signature to use this value type in the signature for eval . To
keep the exposition simple, we do not define Value as an extensible sort, but it
is possible to do this in CS.

The values in this language are either numbers (Num), functions (Clo), or
thunked computations (Thunk):

module HLambda (FX : Effect) where

import Abstracting

type Env = List (String×Value)
data Value = Num Int

| Clo String (Env → [Abort | FX] Value) Env
| Thunk ([Abort | FX] Value)

- - ... (handler for the Abstracting effect) ...
end

Call-by-value We are now ready to define a hander for the Abstracting effect
that implements a call-by-value evaluation strategy. Figure 1 shows its imple-
mentation.

The return case is unremarkable: we simply ignore the environment nv and
return the value v . The cases for lam and thunk are similar, as in both cases
we do not enact the side-effects associated with the stored computation f , but
instead wrap this computation in a Closure or Thunk which is passed to the
continuation k . For variables, we resolve the identifier x in the environment and
pass the result to the continuation.

A call-by-value semantics arises from the implementation of the app case. The

highlights (e.g., t!) indicate where the thunk we constructed for the function
argument in eval is forced. In this case, we force this argument thunk immedi-

handler hCBV : [Abstracting | FX] Value
→ Env → [Abort | FX] Value where

| (lam x f) nv k = k (Clo x f nv) nv

| (app (Clo x f nv ′) (Thunk t)) nv k = v ′ ← f ((x , t!) :: nv ′)

; k v ′ nv
| (app) = abort !

| (var x) nv k = k (lookup nv x) nv
| (thunk f) nv k = k (Thunk {f nv }) nv
| return v nv = v

Fig. 1. A Handler for the Abstracting effect, implementing a call-by-value semantics for
function arguments. The gray highlights indicate where thunks constructed for function
arguments are forced.

ately when encountering a function application, meaning that any side-effects of
the argument take place before we evaluate the function body.

Call-by-name The handler in Figure 2 shows an implementation of a call-by-
name semantics for the Abstracting effect. The only cases differences with the
call-by-value handler in Figure 1 are the app and var cases.

In the case for app, we now put the argument thunk in the environment
immediately, without forcing it first. Instead, in the case for var, we check if the
variable we look up in the environment is a Thunk . If so, we force it and pass
the resulting value to the continuation. In effect, this means that for a variable
that binds an effectful computation, the associated side-effects take place every
time we use that variable, but not until we reference it for the first time.

Example To illustrate the difference between hCBV (Figure 1) and hCBN (Fig-
ure 2), we combine the Lambda module with a module that uses the State effect.
It defines expressions for reading and incrementing a single memory cell contain-
ing an integer:

module Mem : Eval where

import State Int

cons Incr : Expr
| Recall : Expr

case eval Incr = {put (get ! +1); Num get!}
| eval Recall = get

end

When combining Mem and Lambda, we can observe the difference between a
call-by-value and call-by-name evaluation strategy. Figure 3 shows an example
of this.

handler hCBN : [Abstracting | FX] Value
→ Env → [Abort | FX] Value where

| (lam x f) nv k = k (Clo x f nv) nv
| (app (Clo x f nv ′) v) nv k = v ′ ← f ((x , v) :: nv ′)

; k v ′ nv
| (app) = abort !

| (var x) nv k = match lookup x nv with

| (Thunk t)→ k t! nv
| v → k v nv
end

| (thunk f) nv k = k (Thunk {f nv }) nv
| return v nv = v

Fig. 2. A Handler for the Abstracting effect, implementing a call-by-name semantics for
function arguments. The gray highlights indicate where thunks constructed for function
arguments are forced.

3 Outlook

CS is an ongoing research project. Here, we briefly summarize the current state,
and some of the challenges that still remain.

Current state There is a prototype implementation of CS, consisting of an im-
plementation of the operational semantics, a declarative type checker written in
Statix [1], and an interactive environment through which we can interact with
the language. The operational semantics is inspired by a recently-proposed fla-
vor of effect handlers called Latent Effects [2], which unlike plain effects and
handlers can describe many advanced control-flow mechanisms. The Abstracting
effect and its different evaluation strategies are an example of how we can benefit
from this extra expressivity. With this prototype, it is possible to define and run
the examples shown in this abstract.

Static Semantics We are still in the process of developing a type system for CS.
Our plan is to use row types for both effect annotations (e.g., à la Frank [3] and
Koka [6]), and for typing extensible data types and functions. The motivation
for the latter is that CS’s static semantics should prevent problems arising from
missing function clause declarations. Row types seem to be a good fit for this
requirement, since they allow pattern matching functions to reflect in their type
for which constructors they are defined. By assigning a row type to extensible
functions, we statically make the necessary information available to check that
they are not applied to an input for which there does not exist a corresponding
case declaration. We draw inspiration from the Rose [8] language, which applies
row types to type extensible data types and records.

module Test where
import Prelude

,Abstracting
,State Int

,HLambdaCBV [State]
,HLambdaCBN [State]

,Lambda
,Mem

fun execCBV : Expr → (Maybe Value×Int) where
| e = hState {hAbort {hCBV (eval e) []}} 0

fun execCBN : Expr → (Maybe Value×Int) where
| e = hState {hAbort {hCBN (eval e) []}} 0

fun expr : Expr = App (Abs “x” Recall) Incr

- - evaluates to (Just (Num 1) , 1)
fun result1 : (Maybe Value×Int) = execCBV expr

- - evaluates to (Just (Num 0) , 0)
fun result2 : (Maybe Value×Int) = execCBN expr

end

Fig. 3. Examples of different outcomes when using a call-by-value or call-by-name
evaluation strategy.

Core Language Parallel to developing CS, we are also working on developing
a row-typed core language, which is intended as a minimal calculus to which
we can desugar programs written in full CS. We base this core language on
Rose [8], adapting it where necessary to encode (extensible) recursive data types
and row-typed effects. Because the core language is much smaller than the sur-
face language, it becomes more feasible to give a full formal specification of its
semantics, and verify meta-theoretical properties such as type safety. The core
language is still under development, but we hope to use it as a well-understood
foundation for CS in the future. Of course, this will introduce additional chal-
lenges with respect to usability, such as how to provide decent error messages
when type checking CS by going through the core language.

Semantics of extensible functions The current semantics of extensible functions
is given by a catamorphism (fold) over the input type. This is a limiting factor
when we try to implement traversals with a more complex recursive structure as
an extensible function. To make CS’s extensible functions in more expressive, we
could switch to a richer model of extensible functions. For this we could explore,
for example, more expressive recursion schemes [7], or mixin algebras [4].

References

1. van Antwerpen, H., Poulsen, C.B., Rouvoet, A., Visser, E.: Scopes as
types. Proc. ACM Program. Lang. 2(OOPSLA), 114:1–114:30 (2018).
https://doi.org/10.1145/3276484, https://doi.org/10.1145/3276484

2. van den Berg, B., Schrijvers, T., Bach-Poulsen, C., Wu, N.: Latent effects for
reusable language components: Extended version. CoRR abs/2108.11155 (2021),
https://arxiv.org/abs/2108.11155

3. Convent, L., Lindley, S., McBride, C., McLaughlin, C.: Doo bee doo bee doo.
J. Funct. Program. 30, e9 (2020). https://doi.org/10.1017/S0956796820000039,
https://doi.org/10.1017/S0956796820000039

4. Delaware, B., d. S. Oliveira, B.C., Schrijvers, T.: Meta-theory à la carte. In: Gia-
cobazzi, R., Cousot, R. (eds.) The 40th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’13, Rome, Italy - January
23 - 25, 2013. pp. 207–218. ACM (2013). https://doi.org/10.1145/2429069.2429094,
https://doi.org/10.1145/2429069.2429094

5. Johann, P., Ghani, N.: Initial algebra semantics is enough! In: Rocca, S.R.D. (ed.)
Typed Lambda Calculi and Applications, 8th International Conference, TLCA
2007, Paris, France, June 26-28, 2007, Proceedings. Lecture Notes in Computer
Science, vol. 4583, pp. 207–222. Springer (2007). https://doi.org/10.1007/978-3-
540-73228-0 16, https://doi.org/10.1007/978-3-540-73228-0_16

6. Leijen, D.: Type directed compilation of row-typed algebraic effects. In: Castagna,
G., Gordon, A.D. (eds.) Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, Paris, France, January
18-20, 2017. pp. 486–499. ACM (2017). https://doi.org/10.1145/3009837.3009872,
https://doi.org/10.1145/3009837.3009872

7. Meijer, E., Fokkinga, M.M., Paterson, R.: Functional programming with bananas,
lenses, envelopes and barbed wire. In: Hughes, J. (ed.) Functional Program-
ming Languages and Computer Architecture, 5th ACM Conference, Cambridge,
MA, USA, August 26-30, 1991, Proceedings. Lecture Notes in Computer Science,
vol. 523, pp. 124–144. Springer (1991). https://doi.org/10.1007/3540543961 7,
https://doi.org/10.1007/3540543961_7

8. Morris, J.G., McKinna, J.: Abstracting extensible data types: or, rows by
any other name. Proc. ACM Program. Lang. 3(POPL), 12:1–12:28 (2019).
https://doi.org/10.1145/3290325, https://doi.org/10.1145/3290325

9. Plotkin, G.D., Pretnar, M.: Handling algebraic effects. Log. Methods Comput.
Sci. 9(4) (2013). https://doi.org/10.2168/LMCS-9(4:23)2013, https://doi.org/

10.2168/LMCS-9(4:23)2013

10. Strachey, C.: Towards a formal semantics (1966)
11. Strachey, C.S.: Fundamental concepts in programming languages. High. Order

Symb. Comput. 13(1/2), 11–49 (2000). https://doi.org/10.1023/A:1010000313106,
https://doi.org/10.1023/A:1010000313106

12. Swierstra, W.: Data types à la carte. J. Funct. Program. 18(4), 423–436
(2008). https://doi.org/10.1017/S0956796808006758, https://doi.org/10.1017/
S0956796808006758

13. Wadler, P.: The expression problem. http://homepages.inf.ed.ac.uk/wadler/

papers/expression/expression.txt (1998), accessed: 2020-07-01

https://doi.org/10.1145/3276484
https://doi.org/10.1145/3276484
https://arxiv.org/abs/2108.11155
https://doi.org/10.1017/S0956796820000039
https://doi.org/10.1017/S0956796820000039
https://doi.org/10.1145/2429069.2429094
https://doi.org/10.1145/2429069.2429094
https://doi.org/10.1007/978-3-540-73228-0_16
https://doi.org/10.1007/978-3-540-73228-0_16
https://doi.org/10.1007/978-3-540-73228-0_16
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1007/3540543961_7
https://doi.org/10.1007/3540543961_7
https://doi.org/10.1145/3290325
https://doi.org/10.1145/3290325
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

	Towards a Language for Defining Reusable Programming Language Components

