
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

JFP, 51 pages, 2021. © Cambridge University Press 2021 1
doi:10.1017/xxxxx

Hefty Algebras: Modular Elaboration of
Higher-Order Effects

CAS VAN DER REST
Delft University of Technology

(e-mail: c.r.vanderrest@tudelft.nl)

CASPER BACH POULSEN
Delft University of Technology

(e-mail: c.b.poulsen@tudelft.nl)

Abstract

Algebraic effects and handlers is an increasingly popular approach to programming with effects.
An attraction of the approach is its modularity: effectful programs are written against an inter-
face of declared operations, which allows the implementation of these operations to be defined and
refined without changing or recompiling programs written against the interface. However, higher-
order operations (i.e., operations that take computations as arguments) break this modularity. While
it is possible to encode higher-order operations by elaborating them into more primitive algebraic
effects and handlers, such elaborations are typically not modular. In particular, operations defined
by elaboration are typically not a part of any effect interface, so we cannot define and refine their
implementation without changing or recompiling programs. To resolve this problem, a recent line of
research focuses on developing new and improved effect handlers. In this paper we present a (sur-
prisingly) simple alternative solution to the modularity problem with higher-order operations: we
modularize the previously non-modular elaborations commonly used to encode higher-order opera-
tions. We demonstrate how our solution scales to define a wide range of known higher-order effects
from the literature, and develop modular higher-order effect theories and modular reasoning princi-
ples that build on and extend the state of the art in modular algebraic effect theories. All results are
formalized in Agda.

1 Introduction

Defining abstractions for programming with side effects is a research question with a long
and rich history. The goal is to define an interface of (possibly) side effecting operations
where the interface encapsulates and hides irrelevant operational details about the opera-
tions and their side effects. Such encapsulation makes it easy to refactor, optimize, or even
change the behavior of a program, by changing the implementation of the interface.

Monads (Moggi, 1989b) have long been the preferred solution to this research question.
However, algebraic effects and handlers (Plotkin & Pretnar, 2009) are emerging as an
attractive alternative solution, due to the modularity benefits that they provide. However,
these modularity benefits do not apply to many common operations that take computations
as arguments.

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

2 Submitted for publication.

1.1 Background: Algebraic Effects and Handlers

To understand the benefits of algebraic effects and handlers and the modularity problem
with operations that take computations as parameters, we give a brief introduction to alge-
braic effects, based on the effect handlers tutorial by Pretnar (2015). Readers familiar with
algebraic effects and handlers are encouraged to skim the code examples in this subsection
and read its final paragraph.

Consider a simple operation out for output which takes a string as an argument and
returns the unit value. Using algebraic effects and handlers its type is:

out : String→ () ! Output

Here Output is the effect of the operation. In general A ! ∆ is a computation type where A is
the return type and ∆ is a row (i.e., unordered sequence) of effects, where an effect is a label
associated with a set of operations. A computation of type A ! ∆ may only use operations
associated with an effect in ∆. An effect can generally be associated with multiple opera-
tions (but not the other way around); however, the simple Output effect that we consider is
only associated with the operation out. Thus () ! Output is the type of a computation which
may call the out operation.

We can think of Output as an interface that specifies the parameter and return type of out.
The implementation of such an interface is given by an effect handler. An effect handler
defines how to interpret operations in the execution context they occur in. The type of an
effect handler is A ! ∆ ⇒ B ! ∆′, where ∆ is the row of effects before applying the handler
and ∆′ is the row after. For example, here is a specific type of an effect handler for Output:

hOut : A ! Output, ∆⇒ (A× String) ! ∆

The Output effect is being handled, so it is only present in the effect row on the left.1 As
the type suggests, this handler handles out operations by accumulating a string of output.
Below is the handler of this type:

hOut = handler { (return x) 7→ return (x, “”)
(out s; k) 7→ do (y, s′)←k (); return (y, s ++ s′) }

The return case of the handler says that, if the computation being handled terminates
normally with a value x, then we return a pair of x and the empty string. The case for out
binds a variable s for the string argument of the operation, but also a variable k representing
the execution context (or continuation). Invoking an operation suspends the program and
its execution context up-to the nearest handler of the operation. The handler can choose
to re-invoke the suspended execution context (possibly multiple times). The handler case
for out above always invokes k once. Since k represents an execution context that includes
the current handler, calling k gives a pair of a value y and a string s′, representing the final
value and output of the execution context. The result of handling out s is then y and the
current output (s) plus the output of the rest of the program (s′).

In general, a computation m : A ! ∆ can only be run in a context that provides handlers
for each effect in ∆. To this end, the expression with h handle m represents applying the

1 Output could occur in ∆ too. This raises the question: which Output effect does a given handler actually handle?
We refer to the literature for answers to this question; see, e.g., the row treatment of Morris & McKinna (2019),
the effect lifting of Biernacki et al. (2018), and the effect tunneling of Zhang & Myers (2019).

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

Journal of Functional Programming 3

handler h to handle a subset of effects of m. For example, consider:

hello : () ! Output
hello = out “Hello”; out “ world!”

Using this, we can run hello in a scope with the handler hOut to compute the following
result:

(with hOut handle hello) ≡ ((), “Hello world!”)

An attractive feature of algebraic effects and handlers is that programs such as hello
are defined independently of how the effectful operations they use are implemented. This
makes it is possible to refine, refactor, or even change the meaning of operations without
having to modify the programs that use them. For example, we can refine the meaning of
out without modifying the hello program, by using a different handler hOut′ which prints
output to the console. However, some operations are challenging to express in a way that
provides these modularity benefits.

1.2 The Modularity Problem with Higher-Order Operations

Algebraic effects and handlers provide limited support for operations that accept compu-
tations as arguments (sometimes called higher-order operations). As a simple example of
a higher-order operation, say we want to define an effect Censor with a single operation
censor with the following type, where A and ∆ are implicitly universally quantified by the
type signature:

censor : (String→ String)→ A ! Censor, ∆→ A ! Censor, ∆

The intended semantics for the operation censor f m is to apply a censoring function f :
String→ String to the output printed by the computation m. In this section we explain how
and why declaring and handling operations such as this using algebraic effects and handlers
alone does not enjoy the same modularity benefits as the plain algebraic effects discussed
in Section 1.1.

The lack of support for higher-order effects stems from how handler cases are typed.
Following Plotkin & Pretnar (2009); Pretnar (2015), the left and right hand sides of handler
cases are typed as follows:

handler { · · · (op v︸︷︷︸
A

; k︸︷︷︸
B → C ! ∆′

) 7→ c︸︷︷︸
C ! ∆′

, · · · }

Here, A is the argument type of an operation, and B is the return type of an operation.
The term c represents the code of the handler case, which must have type C!∆′, for some
overall handler return type C, and some remaining set of effects ∆′. The only way for c to
have this type is if (1) c = return w, for some w : C; (2) if c calls the continuation k; or
(3) if the operation argument type v has type A = ()→C ! ∆′. Here, option (3) seems most
promising for encoding higher-order effects.

However, encoding computations as value arguments of operations in this way is non-
modular. Following Plotkin & Pretnar (2009); Pretnar (2015), if h handles operations other

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

4 Submitted for publication.

than op, then

with h handle (do x← op v; m) ≡ do x← op v; (with h handle m) (∗)

Consequently, if v contains effects of the type that h handles, then the handler of the opera-
tion op v must eventually explicitly re-apply h or a different handler to handle those effects
that h was supposed to handle. If we apply more handlers of effects contained in the value
v, then the handler of op v must eventually explicitly apply handlers for those too. This sen-
sitivity to the order of applying handlers makes handling higher-order operations encoded
in this way non-modular.

Another consequence of Eq. (∗) is that algebraic effects and handlers only support
higher-order operations whose computation parameters are continuation-like. In particular,
for any operation op : A ! ∆→ · · ·→ A ! ∆→ A ! ∆ and any m1, . . . , mn and k,

do x← (op m1 . . . mn); k x ≡ op (do x1←m1; k x1) . . . (do xn←mn; k xn) (†)

This property, known as the algebraicity property (Plotkin & Power, 2003), says that the
computation parameter values m1, . . . , mn are only ever run in a way that directly passes
control to k. Such operations can without loss of generality or modularity be encoded
as operations without computation parameters (also known as generic effects (Plotkin &
Power, 2003)); e.g., op m1 . . . mn = do x← op′ (); select x where op′ : ()→Dn ! ∆ and
select : Dn→ A ! ∆ is a function that chooses between n different computations using
a data type Dn whose constructors are d1, . . . , dn such that select di = mi for i = 1..n.
Some higher-order operations obey the algebraicity property; many do not. Examples of
operations that do not include:

• Exception handling: let catch m1 m2 be an operation that handles exceptions thrown
during evaluation of computation m1 by running m2 instead, and throw be an
operation that throws an exception. These operations are not algebraic. For example,

do (catch m1 m2); throw ̸≡ catch (do m1; throw) (do m2; throw)

• Local binding (the reader monad (Jones, 1995)): let ask be an operation that reads
a local binding, and local r m be an operation that makes r the current binding in
computation m. Observe:

do (local r m); ask ̸≡ local r (do m; ask)

• Logging with filtering (an extension of the writer monad (Jones, 1995)): let out s be
an operation for logging a string, and censor f m be an operation for post-processing
the output of computation m by applying f : String→ String.2 Observe:

do (censor f m); out s ̸≡ censor f (do m; out s)

It is, however, possible to elaborate higher-order operations into more primitive effects
and handlers. For example, censor can be elaborated into an inline handler application of

2 The censor operation is a variant of the function by the same name the widely used Haskell mtl library:
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Writer-Lazy.html

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

Journal of Functional Programming 5

hOut:

censor : (String→ String)→ A ! Output, ∆→ A ! Output, ∆

censor f m = do (x, s)← (with hOut handle m); out (f s); return x

The other higher-order operations above can be defined in a similar manner.
Elaborating higher-order operations into standard algebraic effects and handlers as illus-

trated above is a key use case that effect handlers were designed for (Plotkin & Pretnar,
2009). However, elaborating operations in this way means the operations are not a part of
any effect interface. So, unlike plain algebraic operations, the only way to refactor, opti-
mize, or change the semantics of higher-order operations defined in this way is to modify
or copy code. In other words, we forfeit one of the key attractive modularity features of
algebraic effects and handlers.

This modularity problem with higher-order effects (i.e., effects with higher-order
operations) was first observed by Wu et al. (2014) who proposed scoped effects and han-
dlers (Wu et al., 2014; Piróg et al., 2018; Yang et al., 2022) as a solution. Scoped effects
and handlers have similar modularity benefits as algebraic effects and handlers, but works
for a wider class of effects, including many higher-order effects. However, van den Berg
et al. (2021) recently observed that operations that defer computation, such as evalua-
tion strategies for λ application or (multi-)staging (Taha & Sheard, 2000), are beyond the
expressiveness of scoped effects. Therefore, van den Berg et al. (2021) introduced another
flavor of effects and handlers that they call latent effects and handlers.

In this paper we present a (surprisingly) simple alternative solution to the modular-
ity problem with higher-order effects, which only uses standard effects and handlers
and off-the-shelf generic programming techniques known from, e.g., data types à la
carte (Swierstra, 2008).

1.3 Solving the Modularity Problem: Elaboration Algebras

We propose to define elaborations such as censor from Section 1.2 in a modular way. To
this end, we introduce a new type of computations with higher-order effects which can be
modularly elaborated into computations with only standard algebraic effects:

A !! H elaborate−−−−−→ A ! ∆
handle−−−→ Result

Here A !! H is a computation type where A is a return type and H is a row comprising both
algebraic and higher-order effects. The idea is that the higher-order effects in the row H
are modularly elaborated into the row ∆. To achieve this, we define elaborate such that
it can be modularly composed from separately defined elaboration cases, which we call
elaboration algebras (for reasons we explain in Section 3). Using A !! H ⇛ A ! ∆ as the type
of elaboration algebras that elaborate the higher-order effects in H to ∆, we can modularly
compose any pair of elaboration algebras e1 : A !! H1 ⇛ A ! ∆ and e2 : A !! H2 ⇛ A ! ∆ into
an algebra e12 : A !! H1, H2 ⇛ A ! ∆.3

Elaboration algebras are as simple to define as non-modular elaborations such as censor
(Section 1.2). For example, here is the elaboration algebra for the higher-order Censor
effect whose only associated operation is the higher-order operation censorop : (String→
3 Readers familiar with data types à la carte (Swierstra, 2008) may recognize this as algebra composition.

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

6 Submitted for publication.

String)→ A !! H→ A !! H:

eCensor : A !! Censor ⇛ A ! Output, ∆

eCensor (censorop f m; k) = do (x, s)← (with hOut handle m); out (f s); k x

The implementation of eCensor is essentially the same as censor. There are two main dif-
ferences. First, elaboration happens in-context, so the value yielded by the elaboration is
passed to the context (or continuation) k. Second, and most importantly, programs that use
the censorop operation are now programmed against the interface given by Censor, mean-
ing programs do not (and cannot) make assumptions about how censorop is elaborated. As
a consequence, we can modularly refine the elaboration of higher-order operations such
as censorop, without modifying the programs that use the operations. For example, the
following program censors and replaces “Hello” with “Goodbye”:4

censorHello : () !! Censor, Output
censorHello = censorop (λ s. if (s≡ “Hello”) then “Goodbye” else s) hello

Say we have a handler hOut′ : (String→ String)→ A ! Output, ∆⇒ (A× String) ! ∆ which
handles each operation out s by pre-applying a censor function (String→ String) to s
before emitting it. Using this handler, we can give an alternative elaboration of censorop

which post-processes output strings individually:

eCensor′ : A !! Censor ⇛ A ! Output, ∆

eCensor′ (censorop f m; k) = do (x, s)← (with hOut′ f handle m); out s; k x

In contrast, eCensor applies the censoring function (String→ String) to the batch out-
put of the computation argument of a censorop operation. The batch output of hello is
“Hello world!” which is unequal to “Hello”, so eCensor leaves the string unchanged. On
the other hand, eCensor′ censors the individually output “Hello”:

with hOut handle (with eCensor elaborate censorHello)≡ ((), “Hello world!”)

with hOut handle (with eCensor′ elaborate censorHello)≡ ((), “Goodbye world!”)

Higher-order operations now have the same modularity benefits as algebraic operations.

1.4 Contributions

This paper formalizes the ideas sketched in this introduction by shallowly embedding them
in Agda. However, the ideas transcend Agda. Similar shallow embeddings can be imple-
mented in other dependently typed languages, such as Idris (Brady, 2013a); but also in
less dependently typed languages like Haskell, OCaml, or Scala.5 By working in a depen-
dently typed language we can state algebraic laws about interfaces of effectful operations,
and prove that implementations of the interfaces respect the laws. We make the following
technical contributions:

• Section 2 describes how to encode algebraic effects in Agda, revisits the modular-
ity problem with higher-order operations, and summarizes how scoped effects and

4 This program relies on the fact that it is generally possible to lift computation A ! ∆ to A !! H when ∆⊆H.
5 The artifact accompanying this paper (van der Rest & Poulsen, 2024) contains a shallow embedding of

elaboration algebras in Haskell.

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

Journal of Functional Programming 7

handlers address the modularity problem, for some (scoped operations) but not all
higher-order operations.

• Section 3 presents our solution to the modularity problem with higher-order oper-
ations. Our solution is to (1) type programs as higher-order effect trees (which we
dub hefty trees), and (2) build modular elaboration algebras for folding hefty trees
into algebraic effect trees and handlers. The computations of type A !! H discussed
in Section 1.3 correspond to hefty trees, and the elaborations of type A !! H ⇛ A ! ∆

correspond to hefty algebras.
• Section 4 presents examples of how to define hefty algebras for common higher-

order effects from the literature on effect handlers.
• Section 5 shows that hefty algebras support formal and modular reasoning on a

par with algebraic effects and handlers, by developing reasoning infrastructure that
supports verification of equational laws for higher-order effects such as exception
catching. Crucially, proofs of correctness of elaborations are compositional. When
composing two proven correct elaboration, correctness of the combined elaboration
follows immediately without requiring further proof work.

Section 6 discusses related work and Section 7 concludes. The paper assumes a passing
familiarity with dependent types. We do not assume familiarity with Agda: we explain
Agda-specific syntax and features when we use them.

An artifact containing the code of the paper and a Haskell embedding of the same ideas
is available online (van der Rest & Poulsen, 2024). A subset of the contributions of this
paper were previously published in a conference paper (Poulsen & van der Rest, 2023).
While that version of the paper too discusses reasoning about higher-order effects, the
correctness proofs were non-modular, in that they make assumptions about the order in
which the algebraic effects implementing a higher-order effect are handled. When com-
bining elaborations, these assumptions are often incompatible, meaning that correctness
proofs for the individual elaborations do not transfer to the combined elaboration. As a
result, one would have to re-prove correctness for every combination of elaborations. For
this extended version, we developed reasoning infrastructure to support modular reason-
ing about higher-order effects in Section 5, and proved that correctness of elaborations is
preserved under composition of elaborations.

2 Algebraic Effects and Handlers in Agda

This section describes how to encode algebraic effects and handlers in Agda. We do not
assume familiarity with Agda and explain Agda specific notation in footnotes. Sections 2.1
to 2.4 defines algebraic effects and handlers; Section 2.5 revisits the problem of defining
higher-order effects using algebraic effects and handlers; and Section 2.6 discusses how
scoped effects (Wu et al., 2014; Piróg et al., 2018; Yang et al., 2022) solves the problem
for scoped operations but not all higher-order operations.

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

8 Submitted for publication.

2.1 Algebraic Effects and The Free Monad

We encode algebraic effects in Agda by representing computations as an abstract syntax
tree given by the free monad over an effect signature. Such effect signatures are tradition-
ally (Awodey, 2010; Swierstra, 2008; Kiselyov & Ishii, 2015; Wu et al., 2014; Kammar
et al., 2013) given by a functor; i.e., a type of kind Set → Set together with a (lawful)
mapping function.6 In our Agda implementation, effect signature functors are defined by
giving a container (Abbott et al., 2003, 2005). Each container corresponds to a value of
type Set→ Set that is both strictly positive7 and universe consistent8 (Martin-Löf, 1984),
meaning they are a constructive approximation of endofunctors on Set. Effect signatures
are given by a (dependent) record type:9 10

record Effect : Set1 where
field Op : Set

Ret : Op→ Set

Here, Op is the set of operations, and Ret defines the return type for each operation in the
set Op. The extension of an effect signature, J K, reflects its input of type Effect as a value
of type Set→ Set:11

J K : Effect→ Set→ Set
J ∆ K X = Σ (Op ∆) λ op→ Ret ∆ op→ X

The extension of an effect ∆ into Set → Set is indeed a functor, as witnessed by the
following function:12

map-sig : (X→ Y)→ J ∆ K X→ J ∆ K Y
map-sig f (op , k) = (op , f ◦ k)

As discussed in the introduction, computations may use multiple different effects. Effect
signatures are closed under co-products:13 14

⊕ : Effect→ Effect→ Effect
Op (∆1 ⊕ ∆2) = Op ∆1 ⊎ Op ∆2

Ret (∆1 ⊕ ∆2) = [Ret ∆1 , Ret ∆2]

6 Set is the type of types in Agda. More generally, functors mediate between different categories. For simplicity,
this paper only considers endofunctors on Set, where an endofunctor is a functor whose domain and codomain
coincides; e.g., Set→ Set.

7 https://agda.readthedocs.io/en/v2.6.2.2/language/positivity-checking.html
8 https://agda.readthedocs.io/en/v2.6.2.2/language/universe-levels.html
9 https://agda.readthedocs.io/en/v2.6.2.2/language/record-types.html

10 The type of effect rows has type Set1 instead of Set. To prevent logical inconsistencies, Agda has a hierarchy
of types where Set : Set1, Set1 : Set2, etc.

11 Here, Σ : (A : Set)→ (A→ Set)→ Set is a dependen sum.
12 To show that this is truly a functor, we should also prove that map-sig satisfies the functor laws. We will not

make use of these functor laws in this paper, so we omit them.
13 The ⊕ function uses copattern matching: https://agda.readthedocs.io/en/v2.6.2.2/language/

copatterns.html. The Op line defines how to compute the Op field of the record produced by the function;
and similarly for the Ret line.

14 ⊎ is a disjoint sum type from the Agda standard library. It has two constructors, inj1 : A → A ⊎ B and
inj2 : B→ A ⊎ B. The [,] function (also from the Agda standard library) is the eliminator for the disjoint sum
type. Its type is [,] : (A→ X)→ (B→ X)→ (A ⊎ B)→ X.

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

Journal of Functional Programming 9

We compute the co-product of two effect signatures by taking the disjoint sum of their oper-
ations and combining the return type mappings pointwise. We use co-products to encode
effect rows. For example, The effect ∆1 ⊕ ∆2 corresponds to the row union denoted as
∆1, ∆2 in the introduction.

The syntax of computations with effects ∆ is given by the free monad over ∆. We encode
the free monad as follows:

data Free (∆ : Effect) (A : Set) : Set where
pure : A → Free ∆ A
impure : J ∆ K (Free ∆ A)→ Free ∆ A

Here, pure is a computation with no side-effects, whereas impure is an operation whose
syntax is given by the functor J ∆ K. By applying this functor to Free ∆ A, we encode an
operation whose continuation may contain more effectful operations.15 To see in what
sense, let us consider an example.

Example. The data type on the left below defines an operation for outputting a string. On
the right is its corresponding effect signature.

data OutOp : Set where
out : String→ OutOp

Output : Effect
Op Output = OutOp
Ret Output (out s) = ⊤

The effect signature on the right says that out returns a unit value (⊤ is the unit type).
Using this, we can write a simple hello world corresponding to the hello program from
Section 1:

hello : Free Output ⊤
hello = impure (out "Hello" , λ → impure (out " world!" , λ x→ pure x))

Section 2.1 shows how to make this program more readable by using monadic do notation.
The hello program above makes use of just a single effect. Say we want to use another

effect, Throw, with a single operation, throw, which represents throwing an exception
(therefore having the empty type ⊥ as its return type):

data ThrowOp : Set where
throw : ThrowOp

Throw : Effect
Op Throw = ThrowOp
Ret Throw throw = ⊥

Programs that use multiple effects, such as Output and Throw, are unnecessarily verbose.
For example, consider the following program which prints two strings before throwing an
exception:16

hello-throw : Free (Output ⊕ Throw) A
hello-throw = impure (inj1 (out "Hello") , λ →

15 By unfolding the definition of J K one can see that our definition of the free monad is identical to the I/O trees
of Hancock & Setzer (2000), or the so-called freer monad of Kiselyov & Ishii (2015).

16 ⊥-elim is the eliminator for the empty type, encoding the principle of explosion: ⊥-elim : ⊥→ A.

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

10 Submitted for publication.

impure (inj1 (out " world!") , λ →
impure (inj2 throw , ⊥-elim)))

To reduce syntactic overhead, we use row insertions and smart constructors (Swierstra,
2008).

2.2 Row Insertions and Smart Constructors

A smart constructor constructs an effectful computation comprising a single operation.
The type of this computation is polymorphic in what other effects the computation has.
For example, the type of a smart constructor for the out effect is:

‵out : {| Output ≲ ∆ |} → String→ Free ∆ ⊤

Here, the {| Output ≲ ∆ |} type declares the row insertion witness as an instance argument
of ‵out. Instance arguments in Agda are conceptually similar to type class constraints in
Haskell: when we call ‵out, Agda will attempt to automatically find a witness of the right
type, and implicitly pass this as an argument.17 Thus, calling ‵out will automatically inject
the Output effect into some larger effect row ∆.

We define the ≲ order on effect rows in terms of a different ∆1 • ∆2 ≈ ∆ which witnesses
that any operation of ∆ is isomorphic to either an operation of ∆1 or an operation of ∆2:1819

record • ≈ (∆1 ∆2 ∆ : Effect) : Set1 where
field reorder : ∀ {X} → J ∆1 ⊕ ∆2 K X↔ J ∆ K X

Using this, the ≲ order is defined as follows:

≲ : (∆1 ∆2 : Effect)→ Set1
∆1 ≲ ∆2 = Σ Effect (λ ∆′ → ∆1 • ∆′ ≈ ∆2)

It is straightforward to show that ≲ is a preorder; i.e., that it is a reflexive and transitive
relation.

We can also define the following function, which uses a ∆1 ≲ ∆2 witness to coerce an
operation of effect type ∆1 into an operation of some larger effect type ∆2.20

inj : {| ∆1 ≲ ∆2 |} → J ∆1 K A→ J ∆2 K A
inj {| , w |} (c , k) = w .reorder .to (inj1 c , k)

Furthermore, we can freely coerce the operations of a computation from one effect row
type to a different effect row type:21 22

17 For more details on how instance argument resolution works, see the Agda documentation: https://agda.
readthedocs.io/en/v2.6.2.2/language/instance-arguments.html

18 Here ∀ {X} is implicit universal quantification over an X : Set: https://agda.readthedocs.io/en/v2.
6.2.2/language/implicit-arguments.html

19 ↔ is the type of an isomorphism on Set from the Agda Standard Library. It is given by a record with two
fields: the to field represents the→ direction of the isomorphism, and from field represents the← direction of
the isomorphism.

20 The dot notation w .reorder projects the reorder field of the record w.
21 The notation ∀[] is from the Agda Standard library, and is defined as follows: ∀[P] = ∀ x→ P x.
22 We can think of the hmap-free function as a “higher-order” map for Free: given a natural transformation

between (the extension of) signatures, we can can transform the signature of a computation. This amounts

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

Journal of Functional Programming 11

hmap-free : ∀[J ∆1 K⇒ J ∆2 K]→ ∀[Free ∆1 ⇒ Free ∆2]
hmap-free θ (pure x) = pure x
hmap-free θ (impure (c , k)) = impure (θ (c , hmap-free θ ◦ k))

Using this infrastructure, we can now implement a generic inject function which lets us
define smart constructors for operations such as the out operation discussed in the previous
subsection.

inject : {| ∆1 ≲ ∆2 |} → Free ∆1 A→ Free ∆2 A
inject = hmap-free inj
‵out : {| Output ≲ ∆ |} → String→ Free ∆ ⊤
‵out s = inject (impure (out s , pure))

2.3 Fold and Monadic Bind for Free

Since Free ∆ is a monad, we can sequence computations using monadic bind, which is
naturally defined in terms of the fold over Free.

fold : (A→ B)→ Alg ∆ B→ Free ∆ A→ B
fold g a (pure x) = g x
fold g a (impure (op , k)) = a (op , fold g a ◦ k)

Alg : (∆ : Effect) (A : Set)→ Set
Alg ∆ A = J ∆ K A→ A

Besides the input computation to be folded (last parameter), the fold is parameterized
by a function A → B (first parameter) which folds a pure computation, and an algebra
Alg ∆ A (second parameter) which folds an impure computation. We call the latter an
algebra because it corresponds to an F-algebra (Arbib & Manes, 1975; Pierce, 1991) over
the signature functor of ∆, denoted F∆. That is, a tuple (A, α) where A is an object called
the carrier of the algebra, and α a morphism F∆(A)→ A. Using fold, monadic bind for the
free monad is defined as follows:

≫= : Free ∆ A→ (A→ Free ∆ B)→ Free ∆ B
m≫= g = fold g impure m

Intuitively, m≫= g concatenates g to all the leaves in the computation m.

Example. The following defines a smart constructor for throw:

‵throw : {| Throw ≲ ∆ |} → Free ∆ A

Using this and the definition of ≫= above, we can use do-notation in Agda to make the
hello-throw program from Section 2.1 more readable:

hello-throw1 : {| Output ≲ ∆ |} → {| Throw ≲ ∆ |} → Free ∆ A
hello-throw1 = do ‵out "Hello"; ‵out " world!"; ‵throw

to the observation that Free is a functor over the category of containers and container morphisms; assuming
hmap-free preserves naturality.

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

12 Submitted for publication.

This illustrates how we use the free monad to write effectful programs against an interface
given by an effect signature. Next, we define effect handlers.

2.4 Effect Handlers

An effect handler implements the interface given by an effect signature, interpreting
the syntactic operations associated with an effect. Like monadic bind, effect handlers
can be defined as a fold over the free monad. The following type of parameter-
ized handlers (Leijen, 2017, §2.2) defines how to fold respectively pure and impure
computations:23

record ⟨ ! ⇒ ⇒ ! ⟩ (A : Set) (∆ : Effect) (P : Set) (B : Set) (∆′ : Effect) : Set1 where
field ret : A→ P→ Free ∆′ B

hdl : Alg ∆ (P→ Free ∆′ B)

A handler of type ⟨ A ! ∆ ⇒ P ⇒ B ! ∆′ ⟩ is parameterized in the sense that it turns a
computation of type Free ∆ A into a parameterized computation of type P→ Free ∆′ B.
The following function does so by folding using ret, hdl, and a to-front function:24

to-front : {| ∆1 • ∆2 ≈ ∆ |} → Free ∆ A→ Free (∆1 ⊕ ∆2) A
to-front {| w |} = hmap-free (w .reorder .from)

given handle : {| w : ∆1 • ∆2 ≈ ∆ |}
→ ⟨ A ! ∆1 ⇒ P⇒ B ! ∆2 ⟩ → Free ∆ A→ (P→ Free ∆2 B)

given handle h m = fold
(ret h)
(λ where (inj1 c , k) p→ hdl h (c , k) p

(inj2 c , k) p→ impure (c , flip k p))
(to-front m)

Comparing with the syntax we used to explain algebraic effects and handlers in the intro-
duction, the ret field corresponds to the return case of the handlers from the introduction,
and hdl corresponds to the cases that define how operations are handled. The parameter-
ized handler type ⟨ A ! ∆⇒ P⇒ B ! ∆′ ⟩ corresponds to the type A ! ∆, ∆′⇒ P→ B ! ∆′,
and given h handle m corresponds to with h handle m.

Using this type of handler, the hOut handler from the introduction can be defined as
follows:

hOut : ⟨ A ! Output⇒⊤⇒ (A × String) ! ∆ ⟩
ret hOut x = pure (x , "")
hdl hOut (out s , k) p = do (x , s′)← k tt p; pure (x , s ++ s′)

The handler hOut in Section 1.1 did not bind any parameters. However, since we are encod-
ing it as a parameterized handler, hOut now binds a unit-typed parameter. Besides this

23 A simpler type of handler could omit the parameter; i.e., ⟨ A ! ∆⇒ B ! ∆′ ⟩, for some A,B : Set and ∆,∆′ : Effect.
As demonstrated in, e.g., the work of Pretnar (2015, §2.4), this type of handler can leverage host language
binding to handle, e.g., the state effect which we discuss later. The style of parameterized handler we use here
follows the exposition of, e.g., Wu et al. (2014); Wu & Schrijvers (2015).

24 The syntax λ where . . . is a pattern-matching lambda in Agda. The function flip has the following type:
(A→ B→ C)→ (B→ A→ C).

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

Journal of Functional Programming 13

data StateOp : Set where
get : StateOp
put : N→ StateOp

State : Effect
Op State = StateOp
Ret State get = N
Ret State (put n) = ⊤

hSt : ⟨ A ! State⇒ N⇒ (A × N) ! ∆′ ⟩
ret hSt x s = pure (x , s)
hdl hSt (put m , k) n = k tt m
hdl hSt (get , k) n = k n n
‵incr : {| State ≲ ∆ |} → Free ∆ ⊤
‵incr = do n← ‵get; ‵put (n + 1)

incr-test : un ((given hSt handle ‵incr) 0) ≡ (tt , 1)
incr-test = refl

Fig. 1. A state effect (upper), its handler (hSt below), and a simple test (incr-test, also below) which
uses (the elided) smart constructors for get and put

difference, the handler is the same as in Section 1.1. We can use the hOut handler to run
computations. To this end, we introduce a Nil effect with no associated operations which
we will use to indicate where an effect row ends:

Nil : Effect
Op Nil = ⊥
Ret Nil = ⊥-elim

un : Free Nil A→ A
un (pure x) = x

Using these, we can run a simple hello world program:25

hello′ : {| Output ≲ ∆ |} → Free ∆ ⊤
hello′ = do
‵out "Hello"; ‵out " world!"

test-hello : un (given hOut handle hello′ $ tt)
≡ (tt , "Hello world!")

test-hello = refl

An example of parameterized (as opposed to unparameterized) handlers, is the state effect.
Figure 1 declares and illustrates how to handle such an effect with operations for reading
(get) and changing (put) the state of a memory cell holding a natural number.

2.5 The Modularity Problem with Higher-Order Effects, Revisited

Section 1.2 described the modularity problem with higher-order effects, using a higher-
order operation that interacts with output as an example. In this section we revisit the
problem, framing it in terms of the definitions introduced in the previous section. To this
end, we use a different effect whose interface is summarized by the CatchM record below.
The record asserts that the computation type M : Set → Set has at least a higher-order
operation catch and a first-order operation throw:

25 The refl constructor is from the Agda standard library, and witnesses that a propositional equality (≡) holds.

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

14 Submitted for publication.

record CatchM (M : Set→ Set) : Set1 where
field catch : M A→ M A→ M A

throw : M A

The idea is that throw throws an exception, and catch m1 m2 handles any exception thrown
during evaluation of m1 by running m2 instead. The problem is that we cannot give a mod-
ular definition of operations such as catch using algebraic effects and handlers alone. As
discussed in Section 1.2, the crux of the problem is that algebraic effects and handlers pro-
vide limited support for higher-order operations. However, as also discussed in Section 1.2,
we can encode catch in terms of more primitive effects and handlers, such as the following
handler for the Throw effect:

hThrow : ⟨ A ! Throw⇒⊤⇒ (Maybe A) ! ∆′ ⟩
ret hThrow x = pure (just x)
hdl hThrow (throw , k) = pure nothing

The handler modifies the return type of the computation by decorating it with a Maybe. If
no exception is thrown, ret wraps the yielded value in a just constructor. If an exception
is thrown, the handler never invokes the continuation k and aborts the computation by
returning nothing instead. We can elaborate catch into an inline application of hThrow.
To do so we make use of effect masking which lets us “weaken” the type of a computation
by inserting extra effects in an effect row:

♯ : {| ∆1 ≲ ∆2 |} → Free ∆1 A→ Free ∆2 A

Using this, the following elaboration defines a semantics for the catch operation:26 27

catch : {| Throw ≲ ∆ |} → Free ∆ A→ Free ∆ A→ Free ∆ A
catch m1 m2 = (♯ (given hThrow handle m1) tt)≫= maybe pure m2

If m1 does not throw an exception, we return the produced value. If it does, m2 is run.
As observed by Wu et al. (2014), programs that use elaborations such as catch are less

modular than programs that only use plain algebraic operations. In particular, the effect
row type of computations no longer represents the interface of operations that we use to
write programs, since the catch elaboration is not represented in the effect type at all. So
we have to rely on different machinery if we want to refactor, optimize, or change the
semantics of catch without having to change programs that use it.

In the next subsection we describe how to define effectful operations such as catch
modularly using scoped effects and handlers, and discuss how this is not possible for, e.g.,
operations representing λ -abstraction.

26 The maybe function is the eliminator for the Maybe type. Its first parameter is for eliminating a just; the
second for nothing. Its type is maybe : (A→ B)→ B→ Maybe A→ B.

27 The instance resolution machinery of Agda requires some help to resolve the instance argument of ♯ here.
We provide a hint to Agda’s instance resolution machinery in an implicit instance argument that we omit for
readability in the paper. In the rest of this paper, we will occasionally follow the same convention.

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

Journal of Functional Programming 15

2.6 Scoped Effects and Handlers

This subsection gives an overview of scoped effects and handlers. While the rest of the
paper can be read and understood without a deep understanding of scoped effects and
handlers, we include this overview to facilitate comparison with the alternative solution
that we introduce in Section 3.

Scoped effects extend the expressiveness of algebraic effects to support a class of higher-
order operations that Wu et al. (2014); Piróg et al. (2018); Yang et al. (2022) call scoped
operations. We illustrate how scoped effects work, using a freer monad encoding of the
endofunctor algebra approach of Yang et al. (2022). The work of Yang et al. (2022) does
not include examples of modular handlers, but the original paper on scoped effects and
handlers by Wu et al. (2014) does. We describe an adaptation of the modular handling
techniques due to Wu et al. (2014) to the endofunctor algebra approach of Yang et al.
(2022).

2.6.1 Scoped Programs

Scoped effects extend the free monad data type with an additional row for scoped opera-
tions. The return and call constructors of Prog below correspond to the pure and impure
constructors of the free monad, whereas enter is new:

data Prog (∆ γ : Effect) (A : Set) : Set where
return : A → Prog ∆ γ A
call : J ∆ K (Prog ∆ γ A) → Prog ∆ γ A
enter : J γ K (Prog ∆ γ (Prog ∆ γ A))→ Prog ∆ γ A

Here, the enter constructor represents a higher-order operation with sub-scopes; i.e.,
computations that themselves return computations:

Prog ∆ γ︸ ︷︷ ︸
outer

(Prog ∆ γ︸ ︷︷ ︸
inner

A)

This type represents scoped computations in the sense that outer computations can be
handled independently of inner ones, as we illustrate in Section 2.6.2. One way to think of
inner computations is as continuations (or join-points) of sub-scopes.

Using Prog, the catch operation can be defined as a scoped operation:

data CatchOp : Set where
catch : CatchOp

Catch : Effect
Op Catch = CatchOp
Ret Catch catch = Bool

The effect signature indicates that Catch has two scopes since Bool has two inhabitants.
Following Yang et al. (2022), scoped operations are handled using a structure-preserving
fold over Prog:

hcata : (∀ {X} → X→ G X)
→ CallAlg ∆ G
→ EnterAlg γ G
→ Prog ∆ γ A→ G A

CallAlg : (∆ : Effect) (G : Set→ Set)→ Set1
CallAlg ∆ G =
{A : Set} → J ∆ K (G A)→ G A

EnterAlg : (γ : Effect) (G : Set→ Set)→ Set1
EnterAlg γ G =
{A B : Set} → J γ K (G (G A))→ G A

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

16 Submitted for publication.

The first argument represents the case where we are folding a return node; the second and
third correspond to respectively call and enter.

2.6.2 Scoped Effect Handlers

The following defines a type of parameterized scoped effect handlers:

record ⟨•! ! ⇒ ⇒ •! ! ⟩ (∆ γ : Effect) (P : Set) (G : Set→ Set)
(∆′ γ ′ : Effect) : Set1 where

field ret : X→ P→ Prog ∆′ γ ′ (G X)
hcall : CallAlg ∆ (λ X→ P→ Prog ∆′ γ ′ (G X))
henter : EnterAlg γ (λ X→ P→ Prog ∆′ γ ′ (G X))
glue : (k : C→ P→ Prog ∆′ γ ′ (G X)) (r : G C)→ P→ Prog ∆′ γ ′ (G X)

A handler of type ⟨• ! ∆ ! γ ⇒ P ⇒ G •! ∆′ ! γ ⟩ handles operations of ∆ and γ simul-
taneously and turns a computation Prog ∆ γ A into a parameterized computation of type
P → Prog ∆′ γ ′ (G A). The ret and hcall cases are similar to the ret and hdl cases from
Section 2.4. The crucial addition which adds support for higher-order operations is the
henter case.

The henter field is given by an EnterAlg case. This case takes as input a scoped opera-
tion whose outer and inner computation have been folded into a parameterized computation
of type P→ Prog ∆′ γ ′ (G X); and returns as output an interpretation of that operation as
a computation of type P → Prog ∆′ γ ′ (G X). The glue function is used for modularly
weaving (Wu et al., 2014) side effects of handlers through sub-scopes of yet-unhandled
operations.

2.6.3 Weaving

To see why glue is needed, it is instructional to look at how the fields in the record type
above are used to fold over Prog:

given handle-scoped : {| w1 : ∆1 • ∆2 ≈ ∆ |} {| w2 : γ1 • γ2 ≈ γ |}
→ ⟨•! ∆1 ! γ1 ⇒ P⇒ G •! ∆2 ! γ2 ⟩
→ Prog ∆ γ A→ P→ Prog ∆2 γ2 (G A)

given h handle-scoped m = hcata (ret h)
⊕[hcall h

, (λ where (c , k) p→ call (c , flip k p))]
⊕[(λ {A} → henter h {A})

, (λ where (c , k) p→ enter (c , λ x→ map-prog (λ y→ glue h id y p) (k x p)))]′

(to-front∆ (to-frontγ m))

The second to last line above shows how glue is used. Because hcata eagerly folds the
current handler over scopes (sc), there is a mismatch between the type that the continuation
expects (B) and the type that the scoped computation returns (G B). The glue function fixes
this mismatch for the particular return type modification G : Set→ Set of a parameterized
scoped effect handler.

The scoped effect handler for exception catching is thus:

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

Journal of Functional Programming 17

hCatch : ⟨•! Throw ! Catch⇒⊤⇒ Maybe •! ∆ ! γ ⟩
ret hCatch x = return (just x)
hcall hCatch (throw , k) = return nothing
henter hCatch (catch , k) = let m1 = k true

m2 = k false in
m1 tt≫= λ where

(just f) → f tt
nothing→ m2 tt≫= maybe ($ tt) (return nothing)

glue hCatch k x = maybe (flip k tt) (return nothing) x

The henter field for the catch operation first runs m1. If no exception is thrown, the value
produced by m1 is forwarded to k. Otherwise, m2 is run and its value is forwarded to k, or
its exception is propagated. The glue field of hCatch says that, if an unhandled exception
is thrown during evaluation of a scope, the continuation is discarded and the exception is
propagated; and if no exception is thrown the continuation proceeds normally.

2.6.4 Discussion and Limitations

As observed by van den Berg et al. (2021), some higher-order effects do not correspond
to scoped operations. In particular, the LambdaM record shown below is not a scoped
operation:

record LambdaM (V : Set) (M : Set→ Set) : Set1 where
field lam : (V → M V)→ M V

app : V → M V → M V

The lam field represents an operation that constructs a λ value. The app field represents an
operation that will apply the function value in the first parameter position to the argument
computation in the second parameter position. The app operation has a computation as its
second parameter so that it remains compatible with different evaluation strategies.

To see why the operations summarized by the LambdaM record above are not scoped
operations, let us revisit the enter constructor of Prog:

enter : J γ K (Prog ∆ γ︸ ︷︷ ︸
outer

(Prog ∆ γ︸ ︷︷ ︸
inner

A))→ Prog ∆ γ A

As summarized earlier in this subsection, enter lets us represent higher-order operations
(specifically, scoped operations), whereas call does not (only algebraic operations). Just
like we defined the computational parameters as scopes (given by the outer Prog in the
type of enter), we might try to define the body of a lambda as a scope in a similar way.
However, whereas the catch operation always passes control to its continuation (the inner
Prog), the lam effect is supposed to package the body of the lambda into a value and pass
this value to the continuation (the inner computation). Because the inner computation is
nested within the outer computation, the only way to gain access to the inner computation
(the continuation) is by first running the outer computation (the body of the lambda). This
does not give us the right semantics.

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

18 Submitted for publication.

It is possible to elaborate the LambdaM operations into more primitive effects and han-
dlers, but as discussed in Sections 1.2 and 2.5, such elaborations are not modular. In the
next section we show how to make such elaborations modular.

3 Hefty Trees and Algebras

As observed in Section 2.5, operations such as catch can be elaborated into more primitive
effects and handlers. However, these elaborations are not modular. We solve this problem
by factoring elaborations into interfaces of their own to make them modular.

To this end, we first introduce a new type of abstract syntax trees (Sections 3.1 to 3.3)
representing computations with higher-order operations, which we dub hefty trees (an
acronymic pun on higher-order ef fects). We then define elaborations as algebras (hefty
algebras; Section 3.4) over these trees. The following pipeline summarizes the idea, where
H is a higher-order effect signature:

Hefty H A elaborate−−−−−→ Free ∆ A handle−−−→ Result

For the categorically inclined reader, Hefty conceptually corresponds to the initial alge-
bra of the functor HeftyF H A R = A + H R (R A) where H : (Set→Set)→ (Set→Set)
defines the signature of higher-order operations and is a higher-order functor, meaning
we have both the usual functorial map : (X→Y)→H F X→H F Y for any functor F as
well as a function hmap : Nat(F, G)→Nat(H F, H G) which lifts natural transformations
between any F and G to a natural transformation between H F and H G. A hefty algebra
is then an F-algebra over a higher-order signature functor H. The notion of elaboration
that we introduce in Section 3.4 is an F-algebra whose carrier is a “first-order” effect tree
(Free ∆).

In this section, we encode this conceptual framework in Agda using a container-inspired
approach to represent higher-order signature functors H as a strictly positive type. We
discuss and compare our approach with previous work in Section 3.5.

3.1 Generalizing Free to Support Higher-Order Operations

As summarized in Section 2.1, Free ∆ A is the type of abstract syntax trees representing
computations over the effect signature ∆. Our objective is to arrive at a more general type
of abstract syntax trees representing computations involving (possibly) higher-order oper-
ations. To realize this objective, let us consider how to syntactically represent this variant
of the censor operation (Section 1.2), where M is the type of abstract syntax trees whose
type we wish to define:

censoro p : (String→ String)→ M ⊤→ M ⊤

We call the second parameter of this operation a computation parameter. Using Free, com-
putation parameters can only be encoded as continuations. But the computation parameter
of censoro p is not a continuation, since

do (censoro p f m); ‵out s ̸≡ censoro p f (do m; ‵out s).

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

Journal of Functional Programming 19

The crux of the issue is how signature functors J ∆ K : Set→ Set are defined. Since this is
an endofunctor on Set, the only suitable option in the impure constructor is to apply the
functor to the type of continuations:

impure : J ∆ K (Free ∆ A︸ ︷︷ ︸
continuation

)→ Free ∆ A

A more flexible approach would be to allow signature functors to build computa-
tion trees with an arbitrary return type, including the return type of the contin-
uation. A higher-order signature functor of some higher-order signature H, written
J H KH : (Set→ Set)→ Set→ Set, would fit that bill. Using such a signature functor, we
could define the impure case as follows:

impure : J H KH (Hefty H︸ ︷︷ ︸
computation

type

)

continuation
return type︷︸︸︷

A → Hefty H A

Here, Hefty is the type of the free monad using higher-order signature functors instead. In
the rest of this subsection, we consider how to define higher-order signature functors H,
their higher-order functor extensions J KH, and the type of Hefty trees.

Recall how we defined plain algebraic effects in terms of containers:

record Effect : Set1 where
field Op : Set

Ret : Op→ Set

Here, Op is the type of operations, and Ret defines the return type of each opera-
tion. In order to allow operations to have sub-computations, we generalize this type to
allow each operation to be associated with a number of sub-computations, where each
sub-computation can have a different return type. The following record provides this
generalization:

record EffectH : Set1 where
field OpH : Set – As before

RetH : OpH → Set – As before
Fork : OpH → Set – New
Ty : {op : OpH} (ψ : Fork op)→ Set – New

The set of operations is still given by a type field (OpH), and each operation still has a
return type (RetH). Fork associates each operation with a type that indicates how many
sub-computations (or forks) an operation has, and Ty indicates the return type of each such
fork. For example, say we want to encode an operation op with two sub-computations with
different return types, and whose return type is of a unit type. That is, using M as our type
of computations:

op : M Z→ M N→ M ⊤

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

20 Submitted for publication.

The following signature declares a higher-order effect signature with a single operation
with return type ⊤, and with two forks (we use Bool to encode this fact), and where each
fork has, respectively Z and N as return types.

example-op : EffectH

OpH example-op = ⊤ – A single operation
RetH example-op tt = ⊤ – with return type ⊤
Fork example-op tt = Bool – with two forks
Ty example-op false = Z – one fork has return type Z
Ty example-op true = N – the other has return type N

The extension of higher-order effect signatures implements the intuition explained above:

J KH : EffectH→ (Set→ Set)→ Set→ Set
J H KH M X =

Σ (OpH H) λ op→ (RetH H op→ M X) × ((ψ : Fork H op)→ M (Ty H ψ))

Let us unpack this definition.

Σ (OpH H) λ op→︸ ︷︷ ︸
(1)

(RetH H op→ M X︸ ︷︷ ︸
(2)

) × ((ψ : Fork H op)︸ ︷︷ ︸
(3)

→ M (Ty H ψ)︸ ︷︷ ︸
(4)

)

The extension of a higher-order signature functor is given by (1) the sum of operations of
the signature, where each operation has (2) a continuation (of type M X) that expects to be
passed a value of the operation’s return type, and (3) a set of forks where each fork is (4) a
computation that returns the expected type for each fork.

Using the higher-order signature functor and its extension above, our generalized free
monad becomes:

data Hefty (H : EffectH) (A : Set) : Set where
pure : A→ Hefty H A
impure : J H KH (Hefty H) A→ Hefty H A

This type of Hefty trees can be used to define higher-order operations with an arbitrary
number of computation parameters, with arbitrary return types. Using this type, and using
a co-product for higher-order effect signatures (∔) which is analogous to the co-product
for algebraic effect signatures in Section 2.2, Fig. 2 represents the syntax of the censoro p

operation.
Just like Free, Hefty trees can be sequenced using monadic bind. Unlike for Free, the

monadic bind of Hefty is not expressible in terms of the standard fold over Hefty trees.
The difference between Free and Hefty is that Free is a regular data type whereas Hefty
is a nested datatype (Bird & Paterson, 1999). The fold of a nested data type is limited to
describe natural transformations. As Bird & Paterson (1999) show, this limitation can be
overcome by using a generalized fold, but for the purpose of this paper it suffices to define
monadic bind as a recursive function:

≫= : Hefty H A→ (A→ Hefty H B)→ Hefty H B
pure x ≫= g = g x
impure (op , k , s)≫= g = impure (op , (≫= g) ◦ k , s)

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

Journal of Functional Programming 21

data CensorOp : Set where
censor : (String→ String)

→ CensorOp

Censor : EffectH

OpH Censor = CensorOp
RetH Censor (censor f) = ⊤
Fork Censor (censor f) = ⊤
Ty Censor {censor f} tt = ⊤

censoro p : (String→ String)→ Hefty (Censor ∔ H) ⊤→ Hefty (Censor ∔ H) ⊤
censoro p f m = impure (inj1 (censor f) , (λ where tt→ m) , pure)

Fig. 2. A higher-order censor effect and operation, with a single computation parameter (declared
with Op = ⊤ in the effect signature top right) with return type ⊤ (declared with Ret = λ →⊤ top
right)

The bind behaves similarly to the bind for Free; i.e., m ≫= g concatenates g to all the
leaves in the continuations (but not computation parameters) of m.

In Section 3.4 we show how to modularly elaborate higher-order operations into more
primitive algebraic effects and handlers (i.e., computations over Free), by folding modular
elaboration algebras (hefty algebras) over Hefty trees. First, we show (in Section 3.2) how
Hefty trees support programming against an interface of both algebraic and higher-order
operations. We also address (in Section 3.3) the question of how to encode effect signatures
for higher-order operations whose computation parameters have polymorphic return types,
such as the highlighted A below:

‵catch : Hefty H A → Hefty H A → Hefty H A

3.2 Programs with Algebraic and Higher-Order Effects

Any algebraic effect signature can be lifted to a higher-order effect signature with no fork
(i.e., no computation parameters):

Lift : Effect→ EffectH

OpH (Lift ∆) = Op ∆

RetH (Lift ∆) = Ret ∆

Fork (Lift ∆) = λ →⊥
Ty (Lift ∆) = λ ()

Using this effect signature, and using higher-order effect row insertion witnesses analogous
to the ones we defined and used in Section 2.2, the following smart constructor lets us
represent any algebraic operation as a Hefty computation:

↑ : {| w : Lift ∆ ≲H H |} → (op : Op ∆)→ Hefty H (Ret ∆ op)

Using this notion of lifting, Hefty trees can be used to program against interfaces of both
higher-order and plain algebraic effects.

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

22 Submitted for publication.

3.3 Higher-Order Operations with Polymorphic Return Types

Let us consider how to define Catch as a higher-order effect. Ideally, we would define
an operation that is parameterized by a return type of the branches of a particular catch
operation, as shown on the left, such that we can define the higher-order effect signature
on the right:28

data CatchOpd : Set1 where
catchd : Set→ CatchOpd

Catchd : EffectH

OpH Catchd = CatchOpd

RetH Catchd (catchd A) = A
Fork Catchd (catchd A) = Bool
Ty Catchd {catchd A} = A

The Fork field on the right says that Catch has two sub-computations (since Bool has two
constructors), and that each computation parameter has some return type A. However, the
signature on the right above is not well defined!

The problem is that, because CatchOpd has a constructor that quantifies over a type
(Set), the CatchOpd type lives in Set1. Consequently it does not fit the definition of
EffectH, whose operations live in Set. There are two potential solutions to this problem:
(1) increase the universe level of EffectH to allow OpH to live in Set1; or (2) use a universe
of types (Martin-Löf, 1984). Either solution is applicable here; we choose type universes.

A universe of types is a (dependent) pair of a syntax of types (Ty : Set) and a semantic
function (J KT : Ty→ Set) defining the meaning of the syntax by reflecting it into Agda’s
Set:

record Univ : Set1 where
field Type : Set

J KT : Type→ Set

Section 4.1 contains a concrete example usage this notion of type universe. Using type
universes, we can parameterize the catch constructor on the left below by a syntac-
tic type Ty of some universe u, and use the meaning of this type (J t KT) as the
return type of the computation parameters in the effect signature on the right below:

data CatchOp {| u : Univ |} : Set where
catch : Type→ CatchOp

Catch : {| u : Univ |} → EffectH

OpH Catch = CatchOp
RetH Catch (catch t) = J t KT

Fork Catch (catch t) = Bool
Ty Catch {catch t} = λ → J t KT

While the universe of types encoding restricts the kind of type that catch can have as a
return type, the effect signature is parametric in the universe. Thus the implementer of the
Catch effect signature (or interface) is free to choose a sufficiently expressive universe of
types.

28 d is for dubious.

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

Journal of Functional Programming 23

3.4 Hefty Algebras

As shown in Section 2.5, the higher-order catch operation can be encoded as a non-modular
elaboration:

catch m1 m2 = (♯ ((given hThrow handle m1) tt))≫= (maybe pure m2)

We can make this elaboration modular by expressing it as an algebra over Hefty trees
containing operations of the Catch signature. To this end, we will use the following notion
of hefty algebra (AlgH) and fold (or catamorphism (Meijer et al., 1991), cataH) for Hefty:

record AlgH (H : EffectH) (F : Set→ Set) : Set1 where
field alg : J H KH F A→ F A

cataH : (∀ {A} → A→ F A)→ AlgH H F→ Hefty H A→ F A
cataH g a (pure x) = g x
cataH g a (impure (op , k , s)) = alg a (op , ((cataH g a ◦ k) , (cataH g a ◦ s)))

Here AlgH defines how to transform an impure node of type Hefty H A into a value of
type F A, assuming we have already folded the computation parameters and continuation
into F values. A nice property of algebras is that they are closed under higher-order effect
signature sums:

⋎ : AlgH H1 F→ AlgH H2 F→ AlgH (H1 ∔ H2) F
alg (A1 ⋎ A2) (inj1 op , k , s) = alg A1 (op , k , s)
alg (A1 ⋎ A2) (inj2 op , k , s) = alg A2 (op , k , s)

By defining elaborations as hefty algebras (below) we can compose them using ⋎ .

Elaboration : EffectH → Effect→ Set1
Elaboration H ∆ = AlgH H (Free ∆)

An Elaboration H ∆ elaborates higher-order operations of signature H into algebraic oper-
ations of signature ∆. Given an elaboration, we can generically transform any hefty tree into
more primitive algebraic effects and handlers:

elaborate : Elaboration H ∆→ Hefty H A→ Free ∆ A
elaborate = cataH pure

Example. The elaboration below is analogous to the non-modular catch elaboration
discussed in Section 2.5 and in the beginning of this subsection:

eCatch : {| u : Univ |} {| w : Throw ≲ ∆ |} → Elaboration Catch ∆

module {| u : Univ |} {| w : Throw ≲ ∆ |} where
eCatch : Elaboration Catch ∆

alg eCatch (catch t , k , s) =
(♯ ((given hThrow handle s true) tt))≫= maybe k (s false≫= k)
where instance = , •-comm (w .proj2)

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

24 Submitted for publication.

The elaboration is essentially the same as its non-modular counterpart, except that it now
uses the universe of types encoding discussed in Section 3.3, and that it now transforms
syntactic representations of higher-order operations instead. Using this elaboration, we can,
for example, run the following example program involving the state effect from Fig. 1, the
throw effect from Section 2.1, and the catch effect defined here:

transact : {| ws : Lift State ≲H H |} {| wt : Lift Throw ≲H H |} {| w : Catch ≲H H |}
→ Hefty H N

transact = do
↑ put 1
‵catch (do ↑ (put 2); (↑ throw)≫= ⊥-elim) (pure tt)
↑ get

The program first sets the state to 1; then to 2; and then throws an exception. The exception
is caught, and control is immediately passed to the final operation in the program which
gets the state. By also defining elaborations for Lift and Nil, we can elaborate and run the
program:

eTransact : {| : Throw ≲ ∆ |} {| : State ≲ ∆ |}
→ Elaboration (Catch ∔ Lift Throw ∔ Lift State ∔ Lift Nil) ∆

eTransact = eCatch ⋎ eLift ⋎ eLift ⋎ eNil

test-transact : un ((given hSt
handle ((given hThrow

handle (elaborate eTransact transact))
tt))

0) ≡ (just 2 , 2)
test-transact = refl

The program above uses a so-called global interpretation of state, where the put operation
in the “try block” of ‵catch causes the state to be updated globally. In Section 4.2.2 we
return to this example and show how we can modularly change the elaboration of the
higher-order effect Catch to yield a so-called transactional interpretation of state where
the put operation in the try block is rolled back when an exception is thrown.

3.5 Discussion and Limitations

Which (higher-order) effects can we describe using hefty trees and algebras? Since the
core mechanism of our approach is modular elaboration of higher-order operations into
more primitive effects and handlers, it is clear that hefty trees and algebras are at least as
expressive as standard algebraic effects. The crucial benefit of hefty algebras over alge-
braic effects is that higher-order operations can be declared and implemented modularly.
In this sense, hefty algebras provide a modular abstraction layer over standard algebraic
effects that, although it adds an extra layer of indirection by requiring both elaborations and
handlers to give a semantics to hefty trees, is comparatively cheap and implemented using
only standard techniques such as F-algebras. As we show in Section 5, hefty algebras also
let us define higher-order effect theories, akin to algebraic effect theories.

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

Journal of Functional Programming 25

Conceptually, we expect that hefty trees can capture any monadic higher-order effect
whose signature is given by a higher-order functor on Set→ Set. Filinski (1999) showed
that any monadic effect can be represented using continuations, and given that we can
encode the continuation monad using algebraic effects (Schrijvers et al., 2019) in terms
of the sub/jump operations (Section 4.2.2) by Thielecke (1997); Fiore & Staton (2014),
it is possible to elaborate any monadic effect into algebraic effects using hefty algebras.
The current Agda implementation, though, is slightly more restrictive. The type of effect
signatures, EffectH, approximates the set of higher-order functors by constructively enforc-
ing that all occurrences of the computation type are strictly positive. Hence, there may be
higher-order effects that are well-defined semantically, but which cannot be captured in the
Agda encoding presented here.

Recent work by van den Berg & Schrijvers (2023) introduced a higher-order free monad
that coincides with our Hefty type. Their work shows that hefty trees are, in fact, a free
monad. Furthermore, they demonstrate that a range of existing effects frameworks from
the literature can be viewed as instances of hefty trees.

When comparing hefty trees to scoped effects, we observe two important differences.
The first difference is that the syntax of programs with higher-order effects is fundamen-
tally more restrictive when using scoped effects. Specifically, as discussed at the end of
Section 2.6.4, scoped effects impose a restriction on operations that their computation
parameters must pass control directly to the continuation of the operation. Hefty trees,
on the other hand, do not restrict the control flow of computation parameters, meaning that
they can be used to define a broader class of operations. For instance, in Section 4.1 we
define a higher-order effect for function abstraction, which is an example of an operation
where control does not flow from the computation parameter to the continuation.

The second difference is that hefty algebras and scoped effects and handlers are modular
in different ways. Scoped effects are modular because we can modularly define, compose,
and handle scoped operations, by applying scoped effect handlers in sequence; i.e.:

Prog ∆0 γ0 A0
h′1−→Prog ∆1 γ1 A1

h′2−→ · · · h′n−→Prog Nil Nil An (‡)

As discussed in Section 2.6.3, each handler application modularly “weaves” effects
through sub-computations, using a dedicated glue function.applying different scoped
effect handlers in different orders.

Hefty algebras, on the other hand, work by applying an elaboration algebra assembled
from modular components in one go. The program resulting from elaboration can then be
handled using standard algebraic effect handlers; i.e.:

Hefty (H0 ∔ · · · ∔ Hm) A
elaborate (E0 ⋎ ··· ⋎ Em)−−−−−−−−−−−−−−−→ Free ∆ A

h1−→ · · · hk−→ Free Nil Ak (§)

The algebraic effect handlers h1, . . . , hk in (‡) serve the same purpose as the scoped
effect handlers h′1, . . . , h′n in (§); namely, to provide a semantics of operations. The order
of handling is significant for both algebraic effect handlers and for scoped effect handlers:
applying the same handlers in different orders may give a different semantics.

In contrast, the order that elaborations (E1, . . . , Em) are composed in (§) does not matter.
Hefty algebras merely mediate higher-order operations into “first-order” effect trees that

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

26 Submitted for publication.

then must be handled, using standard effect handlers. While scoped effects supports “weav-
ing”, standard algebraic effect handlers do not. This might suggest that scoped effects and
handlers are generally more expressive. However, many scoped effects and handlers can
be emulated using algebraic effects and hanlders, by encoding scoped operations as alge-
braic operations whose continuations encode a kind of scoped syntax, inspired by Wu et al.
(2014, §7-9).29 We illustrate how in Section 4.2.2.

4 Examples

As discussed in Section 2.5, there is a wide range of examples of higher-order effects that
cannot be defined as algebraic operations directly, and are typically defined as non-modular
elaborations instead. In this section we give examples of such effects and show to define
them modularly using hefty algebras. The artifact (van der Rest & Poulsen, 2024) contains
the full examples.

4.1 λ as a Higher-Order Operation

As recently observed by van den Berg et al. (2021), the (higher-order) operations for λ

abstraction and application are neither algebraic nor scoped effects. We demonstrate how
hefty algebras allow us to modularly define and elaborate an interface of higher-order
operations for λ abstraction and application, inspired by Levy’s call-by-push-value (Levy,
2006). The interface we will consider is parametric in a universe of types given by the
following record:

record LamUniv : Set1 where
field {| u |} : Univ

↣ : Type→ Type→ Type
c : Type→ Type

The ↣ field represents a function type, whereas c is the type of thunk values.
Distinguishing thunks in this way allows us to assign either a call-by-value or call-by-name
semantics to the interface for λ abstraction, given by the higher-order effect signature in
Fig. 3, and summarized by the following smart constructors:

‵lam : {t1 t2 : Type} → (J c t1 KT → Hefty H J t2 KT) → Hefty H J (c t1) ↣ t2 KT

‵var : {t : Type} → J c t KT → Hefty H J t KT

‵app : {t1 t2 : Type} → J (c t1) ↣ t2 KT→ Hefty H J t1 KT→ Hefty H J t2 KT

Here ‵lam is a higher-order operation with a function typed computation parameter and
whose return type is a function value (J c t1 ↣ t2 KT). The ‵var operation accepts a thunk
value as argument and yields a value of a matching type. The ‵app operation is also a
higher-order operation: its first parameter is a function value type, whereas its second
parameter is a computation parameter whose return type matches that of the function value
parameter type.

29 We suspect that it is generally possible to encode scoped syntax and handlers in terms of algebraic operations
and handlers, but verifying this is future work.

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

Journal of Functional Programming 27

data LamOp {| l : LamUniv |} : Set where
lam : {t1 t2 : Type} → LamOp
var : {t : Type} → J c t KT → LamOp
app : {t1 t2 : Type} → J (c t1) ↣ t2 KT→ LamOp

Lam : {| l : LamUniv |} → EffectH

OpH Lam = LamOp
RetH Lam (lam {t1} {t2}) = J (c t1) ↣ t2 KT

RetH Lam (var {t}) = J t KT

RetH Lam (app {t1} {t2}) = J t2 KT

Fork Lam (lam {t1} {t2}) = J c t1 KT

Fork Lam (var) = ⊥
Fork Lam (app {t1} {t2}) = ⊤
Ty Lam {lam {t1} {t2}} = J t2 KT

Ty Lam {var } ()
Ty Lam {app {t1} {t2} } = J t1 KT

Fig. 3. Higher-order effect signature of λ abstraction and application

The interface above defines a kind of higher-order abstract syntax (Pfenning & Elliott,
1988) which piggy-backs on Agda functions for name binding. However, unlike most Agda
functions, the constructors above represent functions with side-effects. The representation
in principle supports functions with arbitrary side-effects since it is parametric in what
the higher-order effect signature H is. Furthermore, we can assign different operational
interpretations to the operations in the interface without having to change the interface
or programs written against the interface. To illustrate we give two different implementa-
tions of the interface: one that implements a call-by-value evaluation strategy, and one that
implements call-by-name.

4.1.1 Call-by-Value

We give a call-by-value interpretation of ‵lam by generically elaborating to algebraic effect
trees with any set of effects ∆. Our interpretation is parametric in proof witnesses that the
following isomorphisms hold for value types (↔ is the type of isomorphisms from the
Agda standard library):

iso1 : {t1 t2 : Type} → J t1 ↣ t2 KT↔ (J t1 KT→ Free ∆ J t2 KT)
iso2 : {t : Type} → J c t KT↔ J t KT

The first isomorphism says that a function value type corresponds to a function which
accepts a value of type t1 and produces a computation whose return type matches that of
the function type. The second says that thunk types coincide with value types. Using these
isomorphisms, the following defines a call-by-value elaboration of functions:

eLamCBV : Elaboration Lam ∆

alg eLamCBV (lam , k , ψ) = k (from ψ)

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

28 Submitted for publication.

alg eLamCBV (var x , k ,) = k (to x)
alg eLamCBV (app f , k , ψ) = do

a← ψ tt
v← to f (from a)
k v

The lam case passes the function body given by the sub-tree ψ as a value to the continua-
tion, where the from function mediates the sub-tree of type J c t1 KT→ Free ∆ J t2 KT to a
value type J (c t1) ↣ t2 KT, using the isomorphism iso1. The var case uses the to function
to mediate a J c t KT value to a J t KT value, using the isomorphism iso2. The app case
first eagerly evaluates the argument expression of the application (in the sub-tree ψ) to an
argument value, and then passes the resulting value to the function value of the application.
The resulting value is passed to the continuation.

Using the elaboration above, we can evaluate programs such as the following which
uses both the higher-order lambda effect, the algebraic state effect, and assumes that our
universe has a number type J num KT↔ N:

ex : Hefty (Lam ∔ Lift State ∔ Lift Nil) N
ex = do
↑ put 1
f ← ‵lam (λ x→ do

n1 ← ‵var x
n2 ← ‵var x
pure (from ((to n1) + (to n2))))

v← ‵app f incr
pure (to v)
where incr = do s0 ← ↑ get; ↑ put (s0 + 1); s1 ← ↑ get; pure (from s1)

The program first sets the state to 1. Then it constructs a function that binds a variable
x, dereferences the variable twice, and adds the two resulting values together. Finally, the
application in the second-to-last line applies the function with an argument expression
which increments the state by 1 and returns the resulting value. Running the program
produces 4 since the state increment expression is eagerly evaluated before the function is
applied.

elab-cbv : Elaboration (Lam ∔ Lift State ∔ Lift Nil) (State ⊕ Nil)
elab-cbv = eLamCBV ⋎ eLift ⋎ eNil

test-ex-cbv : un ((given hSt handle (elaborate elab-cbv ex)) 0) ≡ (4 , 2)
test-ex-cbv = refl

4.1.2 Call-by-Name

The key difference between the call-by-value and the call-by-name interpretation of our λ

operations is that we now assume that thunks are computations. That is, we assume that
the following isomorphisms hold for value types:

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Journal of Functional Programming 29

iso1 : {t1 t2 : Type} → J t1 ↣ t2 KT↔ (J t1 KT→ Free ∆ J t2 KT)
iso2 : {t : Type} → J c t KT ↔ Free ∆ J t KT

Using these isomorphisms, the following defines a call-by-name elaboration of functions:

eLamCBN : Elaboration Lam ∆

alg eLamCBN (lam , k , ψ) = k (from ψ)
alg eLamCBN (var x , k ,) = to x≫= k
alg eLamCBN (app f , k , ψ) = to f (from (ψ tt))≫= k

The case for lam is the same as the call-by-value elaboration. The case for var now needs
to force the thunk by running the computation and passing its result to k. The case for app
passes the argument sub-tree (ψ) as an argument to the function f , runs the computation
resulting from doing so, and then passes its result to k. Running the example program ex
from above now produces 5 as result, since the state increment expression in the argument
of ‵app is thunked and run twice during the evaluation of the called function.

elab-cbn : Elaboration (Lam ∔ Lift State ∔ Lift Nil) (State ⊕ Nil)
elab-cbn = eLamCBN ⋎ eLift ⋎ eNil

test-ex-cbn : un ((given hSt handle (elaborate elab-cbn ex)) 0) ≡ (5 , 3)
test-ex-cbn = refl

4.2 Optionally Transactional Exception Catching

A feature of scoped effect handlers (Wu et al., 2014; Piróg et al., 2018; Yang et al., 2022)
is that changing the order of handlers makes it possible to obtain different semantics of
effect interaction. A classical example of effect interaction is the interaction between state
and exception catching that we briefly considered at the end of Section 3.4 in connection
with this transact program:

transact : {| ws : Lift State ≲H H |} {| wt : Lift Throw ≲H H |} {| w : Catch ≲H H |}
→ Hefty H N

transact = do
↑ put 1
‵catch (do ↑ put 2; (↑ throw)≫= ⊥-elim) (pure tt)
↑ get

The state and exception catching effect can interact to give either of these two semantics:

1. Global interpretation of state, where the transact program returns 2 since the put
operation in the “try” block causes the state to be updated globally.

2. Transactional interpretation of state, where the transact program returns 1 since
the state changes of the put operation are rolled back when the “try” block throws
an exception.

With monad transformers (Cenciarelli & Moggi, 1993; Liang et al., 1995) we can recover
either of these semantics by permuting the order of monad transformers. With scoped
effect handlers we can also recover either by permuting the order of handlers. However,

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

30 Submitted for publication.

data CCOp {| u : Univ |} (Ref : Type→ Set) : Set where
sub : {t : Type} → CCOp Ref
jump : {t : Type} (ref : Ref t) (x : J t KT)→ CCOp Ref

CC : {| u : Univ |} (Ref : Type→ Set)→ Effect
Op (CC Ref) = CCOp Ref
Ret (CC Ref) (sub {t}) = Ref t ⊎ J t KT

Ret (CC Ref) (jump ref x) = ⊥

Fig. 4. Effect signature of the sub/jump effect

the eCatch elaboration in Section 3.4 always gives us a global interpretation of state. In
this section we demonstrate how we can recover a transactional interpretation of state by
using a different elaboration of the catch operation into an algebraically effectful program
with the throw operation and the off-the-shelf sub/jump control effects due to Thielecke
(1997); Fiore & Staton (2014). The different elaboration is modular in the sense that we
do not have to change the interface of the catch operation nor any programs written against
the interface.

4.2.1 Sub/Jump

We recall how to define two operations, sub and jump, due to Thielecke (1997); Fiore &
Staton (2014). We define these operations as algebraic effects following Schrijvers et al.
(2019). The algebraic effect signature of CC Ref is given in Fig. 4, and is summarized by
the following smart constructors:

‵sub : {| w : CC Ref ≲ ∆ |} (b : Ref t→ Free ∆ A) (k : J t KT→ Free ∆ A)→ Free ∆ A
‵jump : {| w : CC Ref ≲ ∆ |} (ref : Ref t) (x : J t KT)→ Free ∆ B

An operation ‵sub f g gives a computation f access to the continuation g via a reference
value Ref t which represents a continuation expecting a value of type J t KT. The ‵jump
operation invokes such continuations.

The operations and their handler (abbreviated to h) satisfy the following laws:

h (‵sub (λ → p) k) ≡ h p

h (‵sub (λ r→ m≫= ‵jump r) k) ≡ h (m≫= k)

h (‵sub p (‵jump r′)) ≡ h (p r′)

h (‵sub p q≫= k) ≡ h (‵sub (λ x→ p x≫= k) (λ x→ q x≫= k))

The last law asserts that ‵sub and ‵jump are algebraic operations, since their computational
sub-terms behave as continuations. Thus, we encode ‵sub and its handler as an algebraic
effect.

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

Journal of Functional Programming 31

data ChoiceOp : Set where
or : ChoiceOp
fail : ChoiceOp

Choice : Effect
Op Choice = ChoiceOp
Ret Choice or = Bool
Ret Choice fail = ⊥

Fig. 5. Effect signature of the choice effect

4.2.2 Optionally Transactional Exception Catching

By using the ‵sub and ‵jump operations in our elaboration of catch, we get a semantics of
exception catching whose interaction with state depends on the order that the state effect
and sub/jump effect is handled.

eCatchOT : {| w1 : CC Ref ≲ ∆ |} {| w2 : Throw ≲ ∆ |} → Elaboration Catch ∆

alg eCatchOT (catch x , k , ψ) = let m1 = ψ true; m2 = ψ false in
‵sub (λ r→ (♯ ((given hThrow handle m1) tt))≫= maybe k (‵jump r (from tt)))

(λ → m2 ≫= k)

The elaboration uses ‵sub to capture the continuation of a higher-order catch operation.
If no exception is raised, then control flows to the continuation k without invoking the
continuation of ‵sub. Otherwise, we jump to the continuation of ‵sub, which runs m2

before passing control to k. Capturing the continuation in this way interacts with state
because the continuation of ‵sub may have been pre-applied to a state handler that only
knows about the “old” state. This happens when we handle the state effect before the
sub/jump effect: in this case we get the transactional interpretation of state, so running
transact gives 1. Otherwise, if we run the sub/jump handler before the state handler, we
get the global interpretation of state and the result 2.

The sub/jump elaboration above is more involved than the scoped effect handler that
we considered in Section 2.6. However, the complicated encoding does not pollute the
higher-order effect interface, and only turns up if we strictly want or need effect interaction.

4.3 Logic Programming

Following Schrijvers et al. (2014); Wu et al. (2014); Yang et al. (2022) we can define a
non-deterministic choice operation (‵or) as an algebraic effect, to provide support for
expressing the kind of non-deterministic search for solutions that is common in logic pro-
gramming. We can also define a ‵fail operation which indicates that the search in the current
branch was unsuccessful. The effect signature for Choice is given in Fig. 5. The following
smart constructors are the lifted higher-order counterparts to the ‵or and ‵fail operations:

‵orH : {| Lift Choice ≲H H |} → Hefty H A→ Hefty H A→ Hefty H A
‵failH : {| Lift Choice ≲H H |} → Hefty H A

A useful operator for cutting non-deterministic search short when a solution is found is the
‵once operator. The ‵once operator, whose higher-order effect signature is given in Fig. 6,
is not an algebraic effect, but a scoped (and thus higher-order) effect.

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

32 Submitted for publication.

data OnceOp {| u : Univ |} : Set where
once : {t : Type} → OnceOp

Once : {| u : Univ |} → EffectH

OpH Once = OnceOp
RetH Once (once {t}) = J t KT

Fork Once (once {t}) = ⊤
Ty Once {once {t}} = J t KT

Fig. 6. Higher-order effect signature of the once effect

‵once : {| w : Once ≲H H |} {t : Type} → Hefty H J t KT→ Hefty H J t KT

We can define the meaning of the once operator as the following elaboration:

eOnce : {| Choice ≲ ∆ |} → Elaboration Once ∆

alg eOnce (once , k , ψ) = do
l← ♯ ((given hChoice handle (ψ tt)) tt)
maybe k ‵fail (head l)

The elaboration runs the branch (ψ) of once under the hChoice handler to compute a
list of all solutions of ψ . It then tries to choose the first solution and pass that to the
continuation k. If the branch has no solutions, we fail. Under a strict evaluation order, the
elaboration computes all possible solutions which is doing more work than needed. Agda
2.6.2.2 does not have a specified evaluation strategy, but does compile to Haskell which is
lazy. In Haskell, the solutions would be lazily computed, such that the once operator cuts
search short as intended.

4.4 Concurrency

Finally, we consider how to define higher-order operations for concurrency, inspired by
Yang et al.’s [2022] resumption monad (Claessen, 1999; Schmidt, 1986; Piróg & Gibbons,
2014) defined using scoped effects. We summarize our encoding and compare it with the
resumption monad. The goal is to define the two operations, whose higher-order effect
signature is given in ??, and summarized by these smart constructors:

‵spawn : {t : Type} → (m1 m2 : Hefty H J t KT)→ Hefty H J t KT

‵atomic : {t : Type} → Hefty H J t KT → Hefty H J t KT

The operation ‵spawn m1 m2 spawns two threads that run concurrently, and returns the
value produced by m1 after both have finished. The operation ‵atomic m represents a block
to be executed atomically; i.e., no other threads run before the block finishes executing.

We elaborate ‵spawn by interleaving the sub-trees of its computations. To this end, we
use a dedicated function which interleaves the operations in two trees and yields as output
the value of the left input tree (the first computation parameter):

interleavel : {Ref : Type→ Set} → Free (CC Ref ⊕ ∆) A→ Free (CC Ref ⊕ ∆) B
→ Free (CC Ref ⊕ ∆) A

Here, the CC effect is the sub/jump effect that we also used in Section 4.2.2. The
interleavel function ensures atomic execution by only interleaving code that is not

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

Journal of Functional Programming 33

data ConcurOp {| u : Univ |} : Set where
spawn : (t : Type)→ ConcurOp
atomic : (t : Type)→ ConcurOp

Concur : {| u : Univ |} → EffectH

OpH Concur = ConcurOp
RetH Concur (spawn t) = J t KT

RetH Concur (atomic t) = J t KT

Fork Concur (spawn t) = Bool
Fork Concur (atomic t) = ⊤
Ty Concur {spawn t} = J t KT

Ty Concur {atomic t} = J t KT

Fig. 7. Higher-order effect signature of the concur effect

wrapped in a ‵sub operation. We elaborate Concur into CC as follows, where the to-
front and from-front functions use the row insertion witness wa to move the CC effect to
the front of the row and back again:

eConcur : {| w : CC Ref ≲ ∆ |} → Elaboration Concur ∆

alg eConcur (spawn t , k , ψ) =
from-front (interleavel (to-front (ψ true)) (to-front (ψ false)))≫= k

alg eConcur (atomic t , k , ψ) = ‵sub (λ ref → ψ tt≫= ‵jump ref) k

The elaboration uses ‵sub as a delimiter for blocks that should not be interleaved, such that
the interleavel function only interleaves code that does not reside in atomic blocks. At the
end of an atomic block, we ‵jump to the (possibly interleaved) computation context, k.
By using ‵sub to explicitly delimit blocks that should not be interleaved, we have encoded
what Wu et al. (2014, § 7) call scoped syntax.

Example. Below is an example program that spawns two threads that use the Output effect.
The first thread prints 0, 1, and 2; the second prints 3 and 4.

ex-01234 : Hefty (Lift Output ∔ Concur ∔ Lift Nil) N
ex-01234 = ‵spawn (do ↑ out "0"; ↑ out "1"; ↑ out "2"; pure 0)

(do ↑ out "3"; ↑ out "4"; pure 0)

Since the Concur effect is elaborated to interleave the effects of the two threads, the printed
output appears in interleaved order:

test-ex-01234 : un ((given hOut
handle ((given hCC

handle (elaborate concur-elab ex-01234)
) tt)) tt) ≡ (0 , "03142")

test-ex-01234 = refl

The following program spawns an additional thread with an ‵atomic block

ex-01234567 : Hefty (Lift Output ∔ Concur ∔ Lift Nil) N
ex-01234567 = ‵spawn ex-01234

(‵atomic (do ↑ out "5"; ↑ out "6"; ↑ out "7"; pure 0))

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

34 Submitted for publication.

Inspecting the output, we see that the additional thread indeed computes atomically:

test-ex-01234567 : un ((given hOut
handle ((given hCC

handle (elaborate concur-elab ex-01234567)
) tt)) tt) ≡ (0 , "05673142")

test-ex-01234567 = refl

The example above is inspired by the resumption monad, and in particular by the scoped
effects definition of concurrency due to Yang et al. (2022). Yang et al. do not (explicitly)
consider how to define the concurrency operations in a modular style. Instead, they give a
direct semantics that translates to the resumption monad which we can encode as follows
in Agda (assuming resumptions are given by the free monad):

data Resumption ∆ A : Set where
done : A → Resumption ∆ A
more : Free ∆ (Resumption ∆ A)→ Resumption ∆ A

We could elaborate into this type using a hefty algebra AlgH Concur (Resumption ∆)
but that would be incompatible with our other elaborations which use the free monad. For
that reason, we emulate the resumption monad using the free monad instead of using the
Resumption type directly.

5 Modular Reasoning for Higher-Order Effects

A key aspect of algebraic effects and handlers is the ability to state and prove equational
laws that characterize correct implementations of effectful operations. Usually, an effect
comes equipped with multiple laws that govern its intended behavior. An effect and its laws
constitute an effect theory (Hyland et al., 2006; Plotkin & Power, 2002, 2003; Yang & Wu,
2021). This concept of effect theory extends to higher-order effect theories, which describe
the intended behavior of higher-order effects. In this section, we first discuss how to define
theories for algebraic effects in Agda by adapting the exposition of Yang & Wu (2021),
and show how correctness of implementations with respect to a given theory can be stated
and proved. We then extend this reasoning infrastructure to higher-order effects, allowing
for modular reasoning about the correctness of elaborations of higher-order effects.

Let us consider the state effect as an example, which comprises the get and put opera-
tions. With the state effect, we typically associate a set of equations (or laws) that specify
how its implementations ought to behave. One such law is the get-get law, which captures
the intuition that the state returned by two subsequent get operations does not change if
we do not use the put operation in between:

‵get≫= λ s→ ‵get≫= λ s′→ k s s′ ≡ ‵get≫= λ s→ k s s

We can define equational laws for higher-order effects in a similar fashion. For example,
the following catch-return law for the ‵catch operation of the Catch effect, stating that
catching exceptions in a computation that only returns a value does nothing.

‵catch (pure x) m ≡ pure x

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

Journal of Functional Programming 35

Correctness of an implementation of an algebraic effect with respect to a given theory
is defined by comparing the implementations of programs that are equal under that theory.
That is, if we can show that two programs are equal using the equations of a theory for its
effects, handling the effects should produce equal results. For instance, a way to implement
the state effect is by mapping programs to functions of the form S → S×A. Such an
implementation would be correct if programs that are equal with respect to a theory of the
state effect are mapped to functions that give the same value and output state for every
input state.

For higher-order effects, correctness is defined in a similar manner. However, since we
define higher-order effects by elaborating them into algebraic effects, correctness of elabo-
rations with respect to a higher-order effect theory is defined by comparing the elaborated
programs. Crucially, the elaborated programs do not have to be syntactically equal, but
rather we should be able to prove them equal using a theory of the algebraic effects used
to implement a higher-order effect.

Effect theories are known to be closed under the co-product of effects, by combining
the equations into a new theory that contains all equations for both effects (Hyland et al.,
2006). Similarly, theories of higher-order effects are closed under sums of higher-order
effect signatures. In Section 5.8, we show that composing two elaborations preserves their
correctness, with respect to the sum of their respective theories.

5.1 Theories of Algebraic Effects

Theories of effects are collections of equations, so we start defining the type of equa-
tions in Agda. At its core, an equation for an effect ∆ is given by a pair of effect trees of
type Free ∆ A, that define the left- and right-hand side of the equation. However, look-
ing at the get-get law above, we see that this equation contains a term metavariable; i.e.,
k. Furthermore, when considering the type of k, which is S → S → Free ∆ A, we see
that it refers to a type metavariable; i.e., A. Generally speaking, an equation may refer
to any number of term metavariables, which, in turn, may depend on any number of type
metavariables. Moreover, the type of the value returned by the left hand side and right hand
side of an equation may depend on these type metavariables as well, as is the case for the
get-get law above. This motivates the following definition of equations in Agda.

record Equation (∆ : Effect) : Set1 where
field

V : N
Γ : Vec Set V→ Set
R : Vec Set V→ Set
lhs rhs : (vs : Vec Set V)→ Γ vs→ Free ∆ (R vs)

An equation consists of five components. The field V defines the number of type metavari-
ables used in the equation. Then, the fields Γ and R respectively define the term
metavariables (Vec Set V→ Set) and return type (Vec Set V→ Set) of the equation.

Example . To illustrate how the Equation record captures equational laws of effects, we
consider how to define the get-get as a value of type Equation State.

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

36 Submitted for publication.

get-get : Equation State
V get-get = 1
Γ get-get = λ where (A :: [])→ N→ N→ Free State A
R get-get = λ where (A :: [])→ A
lhs get-get (A :: []) k = ‵get≫= λ s→ ‵get≫= λ s′→ k s s′

rhs get-get (A :: []) k = ‵get≫= λ s→ k s s

The fields lhs and rhs define the left- and right-hand sides of the equation. Both
sides only use a single term metavariable, representing a continuation of type
N → N → Free State A. The field Γ declares this term meta-variable. For equations
with more than n > 1 metavariables, we would define Γ as an n-ary product instead.

5.2 Modal Necessity

The current definition of equations is too weak, in the sense that it does not apply in many
situations where it should. The issue is that it fixes the set of effects that can be used in
the left- and right-hand side. To illustrate why this is problematic, consider the following
equality:

get≫= λ s→ get≫= λ s′→ throw ≡ get≫= λ s→ throw (5.1)

We might expect to be able to prove this equality using the get-get law, but using the
embedding of the law defined above—i.e., get-get—this is not possible. The reason for
this is that we cannot pick an appropriate instantiation for the term metavariable k: it ranges
over values of type S → S → Free State A, inhibiting all references to effectful operation
that are not part of the state effect, such as throw.

Given an equation for the effect ∆, the solution to this problem is to view ∆ as a lower
bound on the effects that might occur in the left-hand and right-hand side of the equation,
rather than an exact specification. Effectively, this means that we close over all posible
contexts of effects in which the equation can occur. This pattern of closing over all possible
extensions of a type index is well-known (Allais et al., 2021; van der Rest et al., 2022),
and corresponds to a shallow embedding of the Kripke semantics of the necessity modality
from modal logic. We can define it in Agda as follows.30

record □ (P : Effect→ Set1) (∆ : Effect) : Set1 where
constructor necessary
field
□⟨ ⟩ : ∀ {∆′} → {| ∆ ≲ ∆′ |} → P ∆′

Intuitively, the □ modality transforms, for any effect-indexed type (P : Effect→ Set1), an
exact specification of the set of effects to a lower bound on the set of effects. For equations,
the difference between terms of type Equation ∆ and □ Equation ∆ amounts to the former
defining an equation relating programs that have exactly effects ∆, while the latter defines
an equation relating programs that have at least the effects ∆ but potentially more. The □
modality is a comonad: the counit (extract below) witnesses that we can always transform

30 The constructor keyword declares a function that we can call to construct an instance of a record; and that
we can pattern match on to destruct record instances.

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

Journal of Functional Programming 37

a lower bound on effects to an exact specification, by instantiating the extension witness
with a proof of reflexivity.

extract : {P : Effect→ Set1} → □ P ∆→ P ∆

extract px = □⟨ px ⟩ {| ≲-refl |}

We can now redefine the get-get law such that it applies to all programs that have the
State effect, but potentially other effects too.

get-get : □ Equation State
V □⟨ get-get ⟩ = 1
Γ □⟨ get-get ⟩ (A :: []) = N→ N→ Free A
R □⟨ get-get ⟩ (A :: []) = A
lhs □⟨ get-get ⟩ (A :: []) k = ‵get≫= λ s→ ‵get≫= λ s′→ k s s′

rhs □⟨ get-get ⟩ (A :: []) k = ‵get≫= λ s→ k s s

The above definition of the get-get law now lets us prove the equality in Eq. (5.1); the term
metavariable k ranges ranges over all continuations that return a tree of type Free ∆′ A,
for all ∆′ such that State ≲ ∆′. This way, we can instantiate ∆′ with an effect signature
that subsumes both the State and the Throw, which in turn allows us to instantiate k with
throw.

5.3 Effect Theories

Equations for an effect ∆ can be combined into a theory for ∆. A theory for the effect ∆

is simply a collection of equations, transformed using the □ modality to ensure that term
metavariables can range over programs that include more effects than just ∆.

record Theory (∆ : Effect) : Set1 where
field

arity : Set
equations : arity→ □ Equation ∆

An effect theory consists of an arity, that defines the number of equations in the theory,
and a function that maps arities to equations. We can think of effect theories as defining
a specification for how implementations of an effect ought to behave. Although imple-
mentations may vary, depending for example on whether they are tailored to readability or
efficiency, they should at least respect the equations of the theory of the effect they imple-
ment. We will make precise what it means for an implementation to respect an equation in
Section 5.5.

Effect theories are closed under several composition operations that allow us to combine
the equations of different theories into single theory. The most basic way of combining
effect theories is by summing their arities.

⟨+⟩ : Theory ∆→ Theory ∆→ Theory ∆

arity (T1 ⟨+⟩ T2) = arity T1 ⊎ arity T2

equations (T1 ⟨+⟩ T2) (inj1 a) = equations T1 a
equations (T1 ⟨+⟩ T2) (inj2 a) = equations T2 a

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

38 Submitted for publication.

This way of combining effects is somewhat limiting, as it imposes that the theories we
are combining are theories for the exact same effect. It is more likely, however, that we
would want to combine theories for different effects. This requires that we can weaken
effect theories with respect to the ≲ relation.

weaken-□ : {P : Effect→ Set1} → {| ∆1 ≲ ∆2 |} → □ P ∆1 → □ P ∆2

□⟨ weaken-□ {| w |} px ⟩ {| w′ |} = □⟨ px ⟩ {| ≲-trans w w′ |}

weaken-theory : {| ∆1 ≲ ∆2 |} → Theory ∆1 → Theory ∆2

arity (weaken-theory T) = arity T
equations (weaken-theory T) = λ a→ weaken-□ (T .equations a)

Categorically speaking, the observation that for a given effect-indexed type P we can trans-
form a value of type P ∆1 to a value of type P ∆2 if we know that ∆1 ≲ ∆2 is equivalent
to saying that P is a functor from the category of containers and container morphisms to
the category of sets. From this perspective, the existence of weakening for free Free, as
witnessed by the ♯ operation discussed in Section 3 implies that it too is a such a functor.

With weakening for theories at our disposal, we can combine effect theories for different
effects into a theory of the coproduct of their respective effects. This requires us to first
define appropriate witnesses relating coproducts to effect inclusion.

≲-⊕-left : ∆1 ≲ (∆1 ⊕ ∆2)
≲-⊕-right : ∆2 ≲ (∆1 ⊕ ∆2)

It is now straightforward to show that effect theories are closed under the coproduct of
effect signatures, by summing the weakened theories.

[+] : Theory ∆1 → Theory ∆2 → Theory (∆1 ⊕ ∆2)
T1 [+] T2 = weaken-theory {| ≲-⊕-left |} T1 ⟨+⟩ weaken-theory {| ≲-⊕-right |} T2

While this operation is in principle sufficient for our purposes, it forces a specific order on
the effects of the combined theories. We can further generalize the operation above to allow
for the effects of the combined theory to appear in any order. This requires the following
instances.

≲-•-left : {| ∆1 • ∆2 ≈ ∆ |} → ∆1 ≲ ∆

≲-•-right : {| ∆1 • ∆2 ≈ ∆ |} → ∆2 ≲ ∆

We show that effect theories are closed under coproducts up to reordering by, again,
summing the weakened theories.

compose-theory : {| ∆1 • ∆2 ≈ ∆ |} → Theory ∆1 → Theory ∆2 → Theory ∆

compose-theory T1 T2

= weaken-theory {| ≲-•-left |} T1 ⟨+⟩ weaken-theory {| ≲-•-right |} T2

Since equations are defined by storing the syntax trees that define their left-hand and right-
hand side, and effect trees are weakenable, we would expect equations to be weakenable
too. Indeed, we can define the following function witnessing weakenability of equations.

weaken-eq : {| ∆1 ≲ ∆2 |} → Equation ∆1 → Equation ∆2

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

Journal of Functional Programming 39

This begs the question: why would we opt to use weakenability of the □ modality (or,
bother with the □ modality at all) to show that theories are weakenable, rather than using
weaken-eq directly? Although the latter approach would indeed allow us to define the
composition operations for effect theories defined above, the possible ways in which we
can instantiate term metavariables remains too restrictive. That is, we would still not be
able to prove the equality in Eq. (5.1), despite the fact that we can weaken the get-get law
so that it applies to programs that use the Throw effect as well. Instantiations of the term
metavariable k will be limited to weakened effect trees, precluding any instantiation that
use operations of effects other than State, such as throw.

Finally, we define the following predicate to witness that an equation is part of a theory.

◀ : □ Equation ∆→ Theory ∆→ Set1
eq ◀ T = ∃ λ a→ T .equations a ≡ eq

We construct a proof eq ◀ T that an equation eq is part of a theory T by providing an arity
together with a proof that T maps to eq for that arity.

5.4 Syntactic Equivalence of Effectful Programs

Propositional equality of effectful programs is too strict, as it precludes us from prov-
ing equalities that rely on a semantic understanding of the effects involved, such as the
equality in Eq. (5.1). The solution is to define an inductive relation that captures syntac-
tic equivalence modulo some effect theory. We base our definition of syntactic equality of
effectful programs on the relation defining equivalent computations by Yang & Wu (2021),
Definition 3.1, adapting their definition where necessary to account for the use of modal
necessity in the definition of Theory.

data ≈⟨ ⟩ {∆ ∆′} {| : ∆ ≲ ∆′ |}
: (m1 : Free ∆′ A)→ Theory ∆→ (m2 : Free ∆′ A)→ Set1 where

A value of type m1 ≈⟨ T ⟩ m2 witnesses that programs m1 and m2 are equal modulo the
equations of theory T. The first three constructors ensure that it is an equivalence relation.

≈-refl : m ≈⟨ T ⟩ m
≈-sym : m1 ≈⟨ T ⟩ m2 → m2 ≈⟨ T ⟩ m1

≈-trans : m1 ≈⟨ T ⟩ m2 → m2 ≈⟨ T ⟩ m3 → m1 ≈⟨ T ⟩ m3

Then, we add the following congruence rule, which establishes that we can prove equality
of two programs starting with the same operation by proving that the continuations yield
equal programs for every possible value.

≈-cong : (op : Op ∆′)
→ (k1 k2 : Ret ∆′ op→ Free ∆′ A)
→ (∀ x→ k1 x ≈⟨ T ⟩ k2 x)
→ impure (op , k1) ≈⟨ T ⟩ impure (op , k2)

The final constructor allows to prove equality of programs by reifying equations of an
effect theory.

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

40 Submitted for publication.

≈-eq : (eq : □ Equation ∆)
→ (px : eq ◀ T)
→ (vs : Vec Set (V (□⟨ eq ⟩)))
→ (γ : Γ (□⟨ eq ⟩) vs)
→ (k : R (□⟨ eq ⟩) vs→ Free ∆′ A)
→ (lhs (□⟨ eq ⟩) vs γ ≫= k) ≈⟨ T ⟩ (rhs (□⟨ eq ⟩) vs γ ≫= k)

Since the equations of a theory are wrapped in the □ modality, we cannot refer to its
components directly, but we must first provide a suitable extension witness.

With the ≈-eq constructor, we can prove equivalence between the left-hand and right-
hand side of an equation, sequenced with an arbitrary continuation k. For convenience,
we define the following lemma that allows us to apply an equation where the sides of the
equation do not have a continuation.

use-equation : {| : ∆ ≲ ∆′ |}
→ {T : Theory ∆}
→ (eq : □ Equation ∆)
→ eq ◀ T
→ (vs : Vec Set (V □⟨ eq ⟩))
→ {γ : Γ (□⟨ eq ⟩) vs}
→ lhs (□⟨ eq ⟩) vs γ ≈⟨ T ⟩ rhs (□⟨ eq ⟩) vs γ

The definition of use-equation follows readily from the right-identity law for monads,
i.e., m≫= pure≡m, which allows us to instantiate ≈-eq with pure.

To construct proofs of equality it is convenient to use the following set of combinators to
write proof terms in an equational style. They are completely analogous to the combinators
commonly used to construct proofs of Agda’s propositional equality, for example, as found
in PLFA (Wadler et al., 2020).

module ≈-Reasoning (T : Theory ∆) {| : ∆ ≲ ∆′ |} where
begin : {m1 m2 : Free ∆′ A} → m1 ≈⟨ T ⟩ m2 → m1 ≈⟨ T ⟩ m2

begin eq = eq

■ : (m : Free ∆′ A)→ m ≈⟨ T ⟩ m
m ■ = ≈-refl

≈⟨⟨⟩⟩ : (m1 : Free ∆′ A) {m2 : Free ∆′ A} → m1 ≈⟨ T ⟩ m2 → m1 ≈⟨ T ⟩ m2

m1 ≈⟨⟨⟩⟩ eq = eq

≈⟨⟨ ⟩⟩ : (m1 {m2 m3} : Free ∆′ A)→ m1 ≈⟨ T ⟩ m2 → m2 ≈⟨ T ⟩ m3 → m1 ≈⟨ T ⟩ m3

m1 ≈⟨⟨ eq1 ⟩⟩ eq2 = ≈-trans eq1 eq2

We now have all the necessary tools to prove syntactic equality of programs modulo a
theory of their effect. To illustrate, we consider how to prove the equation in Eq. (5.1).
First, we define a theory for the State effect containing the get-get◀ law. While this is
not the only law typically associated with State, for this example it is enough to only have
the get-get law.

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

Journal of Functional Programming 41

StateTheory : Theory State
arity StateTheory = ⊤
equations StateTheory tt = get-get

Now to prove the equality in Eq. (5.1) is simply a matter of invoking the get-get law.

get-get-throw :
{| : Throw ≲ ∆ |} {| : State ≲ ∆ |}

→ (‵get≫= λ s→ ‵get≫= λ s′→ ‵throw {A = A})
≈⟨ StateTheory ⟩ (‵get≫= λ s→ ‵throw)

get-get-throw {A = A} = begin
‵get≫= (λ s→ ‵get≫= (λ s′→ ‵throw))
≈⟨⟨ use-equation get-get (tt , refl) (A :: []) ⟩⟩
‵get≫= (λ s→ ‵throw)

■
where open ≈-Reasoning StateTheory

5.5 Handler Correctness

A handler is correct with respect to a given theory if handling syntactically equal programs
yields equal results. Since handlers are defined as algebras over effect signatures, we start
by defining what it means for an algebra of an effect ∆ to respect an equation of the same
effect, adapting Definition 2.1 from the exposition of Yang & Wu (2021).

Respects : Alg ∆ A→ Equation ∆→ Set1
Respects alg eq = ∀ {vs γ k} →

fold k alg (lhs eq vs γ) ≡ fold k alg (rhs eq vs γ)

An algebra alg respects an equation eq if folding with that algebra produces propositionally
equal results for the left- and right-hand side of the equation, for all possible instantiations
of its type and term metavariables, and continuations k.

A handler H is correct with respect to a given theory T if its algebra respects all equations
of T (Yang & Wu, 2021, Definition 4.3).

Correct : {P : Set} → Theory ∆→ ⟨ A ! ∆⇒ P⇒ B ! ∆′ ⟩ → Set1
Correct T H = ∀ {eq} → eq ◀ T → Respects (H .hdl) (extract eq)

We can now show that the handler for the State effect defined in Fig. 1 is correct with
respect to StateTheory. The proof follows immediately by reflexivity.

hStCorrect : Correct {A = A} {∆′ = ∆} StateTheory hSt
hStCorrect (tt , refl) { :: []} {γ = k} = refl

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

42 Submitted for publication.

5.6 Theories of Higher-Order Effects

For the most part, equations and theories for higher-order effects are defined in the same
way as for first-order effects and support many of the same operations. Indeed, the defi-
nition of equations ranging over higher-order effects is exactly the same as its first-order
counterpart, the most major difference being that the left-hand and right-hand side are now
defined as Hefty trees. To ensure compatibility with the use of type universes to avoid
size-issues, we must also allow type metavariables to range over the types in a universe
in addition to Set. For this reason, the set of type metavariables is no longer described
by a natural number, but rather by a list of kinds, which stores for each type metavariable
whether it ranges over a types in a universe, or an Agda Set.

data Kind : Set where set type : Kind

A TypeContext carries unapplied substitutions for a given set of type metavariables, and
is defined by induction over a list of kinds.31

TypeContext : List Kind→ Set1
TypeContext [] = Level.Lift ⊤
TypeContext (set :: vs) = Set × TypeContext vs
TypeContext (type :: vs) = Level.Lift (sℓ 0ℓ) Type × TypeContext vs

Equations of higher-order effects are then defined as follows.

record EquationH (H : EffectH) : Set1 where
field

V : List Kind
Γ : TypeContext V→ Set
R : TypeContext V→ Set
lhs rhs : (vs : TypeContext V)→ Γ vs→ Hefty H (R vs)

This definition of equations suffers the same problem when it comes to term metavariables,
which here too can only range over programs that exhibit the exact effect that the equation
is defined for. Again, we address the issue using an embedding of modal necessity to
close over all possible extensions of this effect. The definition is analogous to the one in
Section 5.2, but this time we use higher-order effect subtyping as the modal accessibility
relation:

record □ (P : EffectH → Set1) (H : EffectH) : Set1 where
constructor necessary
field □⟨ ⟩ : ∀ {H′} → {| H ≲H H′ |} → P H′

To illustrate: we can define the catch-return law from the introduction of this section as a
value of type □ EquationH Catch a follows. Since the ‵catch operation relies on a type
universe to avoid size issues, the sole type metavariable of this equation must range over
the types in this universe as well.

catch-return : □ EquationH Catch
V □⟨ catch-return ⟩ = type :: []

31 Level.Lift lifts a type in Set to a type in Set1. The constructor of Level.Lift is lift.

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

Journal of Functional Programming 43

Γ □⟨ catch-return ⟩ (lift t ,) = J t KT × Hefty J t KT

R □⟨ catch-return ⟩ (lift t ,) = J t KT

lhs □⟨ catch-return ⟩ (x , m) = ‵catch (pure x) m
rhs □⟨ catch-return ⟩ (x , m) = pure x

Theories of higher-order effects bundle extensible equations. The setup is the same as
for theories of first-order effects.

record TheoryH (H : EffectH) : Set1 where
field

arity : Set
equations : arity→ □ EquationH H

The following predicate establishes that an equation is part of a theory. We prove this fact
by providing an arity whose corresponding equation is equal to eq.

◀H : □ EquationH H→ TheoryH H→ Set1
eq ◀H Th = ∃ λ a→ eq ≡ equations Th a

Weakenability of theories of higher-order effects then follows from weakenability of its
equations.

weaken-□ : ∀ {P} → {| H1 ≲H H2 |} → □ P H1 → □ P H2

□⟨ weaken-□ {| w |} px ⟩ {| w′ |} = □⟨ px ⟩ {| ≲H-trans w w′ |}

weaken-theoryH : {| H1 ≲H H2 |} → TheoryH H1 → TheoryH H2

arity (weaken-theoryH Th) = Th .arity
equations (weaken-theoryH Th) a = weaken-□ (Th .equations a)

Theories of higher-order effects can be combined using the following sum operation.
The resulting theory contains all equations of both argument theories.

⟨+⟩H : ∀[TheoryH⇒ TheoryH⇒ TheoryH]
arity (Th1 ⟨+⟩H Th2) = arity Th1 ⊎ arity Th2

equations (Th1 ⟨+⟩H Th2) (inj1 a) = equations Th1 a
equations (Th1 ⟨+⟩H Th2) (inj2 a) = equations Th2 a

Theories of higher-order effects are closed under sums of higher-order effect theories as
well. This operation is defined by appropriately weakening the respective theories, for
which we need the following lemmas witnessing that higher-order effect signatures can be
injected in a sum of signatures.

≲-∔-left : H1 ≲H (H1 ∔ H2)
≲-∔-right : H2 ≲H (H1 ∔ H2)

The operation that combines theories under signature sums is then defined like so.

[+]H : TheoryH H1 → TheoryH H2 → TheoryH (H1 ∔ H2)
Th1 [+]H Th2

= weaken-theoryH {| ≲-∔-left |} Th1 ⟨+⟩H weaken-theoryH {| ≲-∔-right |} Th2

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

44 Submitted for publication.

5.7 Equivalence of Programs with Higher-Order Effects

We define the following inductive relation to capture equivalence of programs with higher-
order effects modulo the equations of a given theory.

data ∼=⟨ ⟩ {| : H1 ≲H H2 |}
: (m1 : Hefty H2 A)→ TheoryH H1 → (m2 : Hefty H2 A)→ Set1 where

To ensure that it is indeed an equivalence relation, we include constructors for reflexivity,
symmetry, and transitivity.

∼=-refl : ∀ {m : Hefty H2 A}
→ m ∼=⟨ Th ⟩ m

∼=-sym : ∀ {m1 : Hefty H2 A} {m2}
→ m1 ∼=⟨ Th ⟩ m2

→ m2 ∼=⟨ Th ⟩ m1

∼=-trans : ∀ {m1 : Hefty H2 A} {m2 m3}
→ m1 ∼=⟨ Th ⟩ m2 → m2 ∼=⟨ Th ⟩ m3

→ m1 ∼=⟨ Th ⟩ m3

Furthermore, we include the following congruence rule that equates two program trees that
have the same operation at the root, if their continuations are equivalent for all inputs.

∼=-cong : (op : OpH H2)
→ (k1 k2 : RetH H2 op→ Hefty H2 A)
→ (s1 s2 : (ψ : Fork H2 op)→ Hefty H2 (Ty H2 ψ))
→ (∀ {x} → k1 x ∼=⟨ Th ⟩ k2 x)
→ (∀ {ψ} → s1 ψ ∼=⟨ Th ⟩ s2 ψ)
→ impure (op , k1 , s1) ∼=⟨ Th ⟩ impure (op , k2 , s2)

Finally, we include a constructor that equates two programs using an equation of the theory.

∼=-eq : (eq : □ EquationH H1)
→ eq ◀H Th
→ (vs : TypeContext (V □⟨ eq ⟩))
→ (γ : Γ □⟨ eq ⟩ vs)
→ (k : R □⟨ eq ⟩ vs→ Hefty H2 A)
→ (lhs □⟨ eq ⟩ vs γ ≫= k) ∼=⟨ Th ⟩ (rhs □⟨ eq ⟩ vs γ ≫= k)

We can define the same reasoning combinators as in Section 5.4 to construct proofs of
equivalence for programs with higher-order effects.

module ∼=-Reasoning {| : H1 ≲H H2 |} (Th : TheoryH H1) where

begin : {m1 m2 : Hefty H2 A} → m1 ∼=⟨ Th ⟩ m2 → m1 ∼=⟨ Th ⟩ m2

begin eq = eq

■ : (c : Hefty H2 A)→ c ∼=⟨ Th ⟩ c

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

Journal of Functional Programming 45

c ■ = ∼=-refl

∼=⟨⟨⟩⟩ : (m1 : Hefty H2 A) {m2 : Hefty H2 A} → m1 ∼=⟨ Th ⟩ m2 → m1 ∼=⟨ Th ⟩ m2

c1 ∼=⟨⟨⟩⟩ eq = eq

∼=⟨⟨ ⟩⟩ : (c1 {c2 c3} : Hefty H2 A)→ c1 ∼=⟨ Th ⟩ c2 → c2 ∼=⟨ Th ⟩ c3 → c1 ∼=⟨ Th ⟩ c3

c1 ∼=⟨⟨ eq1 ⟩⟩ eq2 = ∼=-trans eq1 eq2

To illustrate, we can prove that the programs catch throw (censor f m) and censor f m
are equal under a theory for the a fCatch effect that contains the catch-return law.

catch-return-censor : ∀ {t : Type} {f} {x : J t KT} {m : Hefty H J t KT}
→ {| : Catch ≲H H |} → {| : Censor ≲H H |}
→ ‵catch (pure x) (‵censor f m)
∼=⟨ CatchTheory ⟩ pure x

catch-return-censor {f = f} {x = x} {m = m} =
begin
‵catch (pure x) (‵censor f m)
∼=⟨⟨ use-equationH catch-return (tt , refl) ⟩⟩

pure x
■
where open ∼=-Reasoning

The equivalence proof above makes, again, essential use of modal necessity. That is, by
closing over all possible extensions of the Catch effe, the term metavariable in the catch-
return law to range over programs that have higher-order effects other than Catch, which
is needed to apply the law if the second branch of the catch operation contains the censor
operation.

5.8 Correctness of Elaborations

As the first step towards defining correctness of elaborations, we must specify what it
means for an algebra over a higher-order effect signature H to respect an equation. The
definition is broadly similar to its counterpart for first-order effects in Section 5.5, with
the crucial difference that the definition of “being equation respecting” for algebras over
higher-order effect signatures is parameterized over a binary relation ≈ between first-
order effect trees. In practice, this binary relation will be instantiated with the inductive
equivalence relation defined in Section 5.4; propositional equality would be too restrictive,
since that does not allow us prove equivalence of programs using equations of the first-
order effect(s) that we elaborate into.

RespectsH : (≈ : ∀ {A} → Free ∆ A→ Free ∆ A→ Set1)
→ AlgH H (Free ∆)→ EquationH H→ Set1

RespectsH ≈ alg eq =
∀ {vs γ} → cataH pure alg (lhs eq vs γ) ≈ cataH pure alg (rhs eq vs γ)

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

46 Submitted for publication.

Since elaborations are composed in parallel, the use of necessity in the definition of
equations has additional consequences for the definiton of elaboration correctness. That
is, correctness of an elaboration is defined with respect to a theory whose equations have
left-hand and right-hand sides that may contain term metavariables that range over pro-
grams with more higher-order effects than those the elaboration is defined for. Therefore,
to state correctness, we must also close over all possible ways these additional effects are
elaborated. For this, we define the following binary relation on extensible elaborations.32

record ⊑ (e1 : □ (Elaboration H1) ∆1) (e2 : □ (Elaboration H2) ∆2) : Set1 where
field
{| ≲-eff |} : ∆1 ≲ ∆2

{| ≲H-eff |} : H1 ≲H H2

preserves-cases
: ∀ {M} (m : J H1 KH M A)
→ (e′ : ∀[M⇒ Free ∆2])
→ □⟨ e1 ⟩ .alg (map-sigH (λ {x} → e′ {x}) m)
≡ extract e2 .alg (map-sigH (λ {x} → e′ {x}) (injH {X = A} m))

A proof of the form e1 ⊑ e2 witnesses that the elaboration e1 is included in e2. Informally,
this means that e2 may elaborate a bigger set of higher-order effects, for which it may need
to refer to a bigger set of first-order effects, but for those higher-order effects that both e1

and e2 know how to elaborate, they should agree on how those effects are elaborated.
We then define correctness of elaborations as follows.

CorrectH : TheoryH H→ Theory ∆→ □ (Elaboration H) ∆→ Set1
CorrectH Th T e =
∀ {∆′ H′}
→ (e′ : □ (Elaboration H′) ∆′)
→ {| : e ⊑ e′ |}
→ {eq : □ EquationH }
→ eq ◀H Th
→ RespectsH (≈⟨ T ⟩) (extract e′) □⟨ eq ⟩

Which is to say that an elaboration is correct with respect to a theory of the higher-order
effects it elaborates (Th) and a theory of the first-order effects it elaborates into (T), if all
possible extensions of said elaboration respect all equations of the higher-order theory,
modulo the equations of the first-order theory.

Crucially, correctness of elaborations is preserved under composition of elaborations.
Fig. 8 shows the type of the corresponding correctness theorem in Agda; for the full details
of the proof we refer to the Agda formalization accompanying this paper (van der Rest
& Poulsen, 2024). We remark that correctness of a composed elaboration is defined with
respect to the composition of the theories of the first-order effects that the respective elabo-
rations use. Constructing a handler that is correct with respect to this composed first-order
effect theory is a separate concern; a solution based on fusion is detailed in the work by
Yang & Wu (2021).

32 Here, injH is the higher-order counterpart to the inj function discussed in Section 2.2.

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

Journal of Functional Programming 47

compose-elab-correct : {| : ∆1 • ∆2 ≈ ∆ |}
→ (e1 : □ (Elaboration H1) ∆1)
→ (e2 : □ (Elaboration H2) ∆2)
→ (T1 : Theory ∆1)
→ (T2 : Theory ∆2)
→ (Th1 : TheoryH H1)
→ (Th2 : TheoryH H2)
→ CorrectH Th1 T1 e1

→ CorrectH Th2 T2 e2

→ CorrectH (Th1 [+]H Th2) (compose-theory T1 T2)
(compose-elab e1 e2)

Fig. 8. The central correctness theorem, which establishes that correctness of elaborations is
preserved under composition.

5.9 Proving Correctness of Elaborations

To illustrate how the reasoning infrastructure build up in this section can be applied to
verify correctness of elaborations, we show how to verify the catch-return law for the elab-
oration eCatch defined in Section 3.4. First, we define the following syntax for invoking
a known elaboration.

module Elab (e : □ (Elaboration H) ∆) where
E J K : Hefty H A→ Free ∆ A
E J m K = elaborate (extract e) m

When opening the module Elab, we can use the syntax E J mK for elaborating m with some
known elaboration, which helps to simplify and improve readability of equational proofs
for higher-order effects.

Now, to prove that eCatch is correct with respect to a higher-order theory for the
Catch effect containing the catch-return law, we must produce a proof that the programs
E J ‵catch (return x) m K and E J return K are equal (in the sense of the inductive equiva-
lence relation defined in Section 5.4) with respect to some first-order theory for the Throw
effect. In this instance, we do not need any equations from this underlying theory to prove
the equality, but sometimes it is necessary to invoke equations of the underlying first-order
effects to prove correctness of an elaboration.

eCatchCorrect : {T : Theory Throw} → CorrectH CatchTheory T eCatch
eCatchCorrect {∆′ = ∆′} e′ {| ζ |} (tt , refl) {γ = x , m} =

begin
E J ‵catch (pure x) m K
≈⟨⟨ from-≡ (sym $ ζ .preserves-cases E J K) ⟩⟩

(♯ (given hThrow handle (pure x) $ tt))≫= maybe′ pure (E J m K)
≈⟨⟨⟩⟩ {- By definition of hThrow -}

(pure (just x)≫= maybe′ pure ((E J m K≫= pure)))
≈⟨⟨⟩⟩ {- By definition of≫= -}

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

48 Submitted for publication.

Effect Laws
Throw ‵throw≫= k ≡ k bind-throw

State

‵get≫= λ s→ ‵get≫= k s ≡ ‵get≫= k s s get-get
‵get≫= ‵put ≡ pure x get-put

‵put s≫ ‵get ≡ ‵put s≫ pure s put-get
‘put s≫ ‵put s′ ≡ ‵put s′ put-put

Reader

‵ask≫ m ≡ m ask-query
‵ask≫= λ r→ ‵ask≫= k r ≡ ‵ask≫= λ r→ k r r ask-ask

m≫= λ x→ ‵ask≫= λ r→ k x r ≡ ‵ask≫= λ r→ m≫= λ x→ k x r ask-bind

LocalReader

‵local f (pure x) ≡ pure x local-pure
‵local f (m≫= k) ≡ ‵local f m≫= ‵local f ◦ k local-bind

‵local f ‵ask ≡ pure ◦ f local-ask
‵local (f ◦ g) m ≡ ‵local g (‵local f m) local-local

Catch

‵catch (pure x) m ≡ pure x catch-pure
‵catch ‵throw m ≡ m catch-throw1
‵catch m ‵throw ≡ m catch-throw2

Lambda
‵abs f≫= λ f′→ ‵app f′ m ≡ m≫= f beta
pure f ≡ ‵abs (λ x→ ‵app f (‵var x)) eta

Table 1. Overview of effects, their operations, and verified laws in the Agda code.

E J pure x K
■
where

open ≈-Reasoning
open Elab e′

In the Agda formalization accompanying this paper (van der Rest & Poulsen, 2024), we
verify correctness of elaborations for the higher-order operations that are part of the 3MT
library by Delaware et al. (2013). Table 1 shows an overview of first-order and higher-order
effects included in the development, and the laws which we prove about their handlers
respectively elaborations.

6 Related Work

As stated in the introduction of this paper, defining abstractions for programming con-
structs with side effects is a research question with a long and rich history, which we
briefly summarize here. Moggi (1989a) introduced monads as a means of modeling side
effects and structuring programs with side effects; an idea which Wadler (1992) helped
popularize. A problem with monads is that they do not naturally compose. A range of
different solutions have been developed to address this issue (Steele Jr., 1994; Jones &
Duponcheel, 1993; Filinski, 1999; Cenciarelli & Moggi, 1993). Of these solutions, monad
transformers (Cenciarelli & Moggi, 1993; Liang et al., 1995; Jaskelioff, 2008) is the more
widely adopted solution. However, more recently, algebraic effects (Plotkin & Power,
2002) was proposed as an alternative solution which offers some modularity benefits over
monads and monad transformers. In particular, whereas monads and monad transformers
may “leak” information about the implementation of operations, algebraic effects enforce

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

Journal of Functional Programming 49

a strict separation between the interface and implementation of operations. Furthermore,
monad transformers commonly require glue code to “lift” operations between layers of
monad transformer stacks. While the latter problem is addressed by the Monatron frame-
work of Jaskelioff (2008), algebraic effects have a simple composition semantics that does
not require intricate liftings.

However, some effects, such as exception catching, did not fit into the framework of
algebraic effects. Effect handlers (Plotkin & Pretnar, 2009) were introduced to address
this problem. Algebraic effects and handlers has since been gaining traction as a frame-
work for modeling and structuring programs with side effects in a modular way. Several
libraries have been developed based on the idea such as Handlers in Action (Kammar et al.,
2013), the freer monad (Kiselyov & Ishii, 2015), or Idris’ Effects DSL (Brady, 2013b);
but also standalone languages such as Eff (Bauer & Pretnar, 2015), Koka (Leijen, 2017),
Frank (Lindley et al., 2017), and Effekt (Brachthäuser et al., 2020).33

As discussed in Section 1.2 and Section 2.5, some modularity benefits of algebraic
effects and handlers do not carry over to higher-order effects. Scoped effects and han-
dlers (Wu et al., 2014; Piróg et al., 2018; Yang et al., 2022) address this shortcoming
for scoped operations, as we summarized in Section 2.6. This paper provides a different
solution to the modularity problem with higher-order effects. Our solution is to provide
modular elaborations of higher-order effects into more primitive effects and handlers. We
can, in theory, encode any effect in terms of algebraic effects and handlers. However, for
some effects, the encodings may be complicated. While the complicated encodings are
hidden behind a higher-order effect interface, complicated encodings may hinder under-
standing the operational semantics of higher-order effects, and may make it hard to verify
algebraic laws about implementations of the interface. Our framework would also support
elaborating higher-order effects into scoped effects and handlers, which might provide
benefits for verification. We leave this as a question to explore in future work.

Although not explicitly advertised, some standalone languages, such as Frank (Lindley
et al., 2017) and Koka (Leijen, 2017) do have some support for higher-order effects. The
denotational semantics of these features of these languages is unclear. A question for
future work is whether the modular elaborations we introduce could provide a denotational
model.

A recent paper by van den Berg et al. (2021) introduced a generalization of scoped
effects that they call latent effects which supports a broader class of effects, including
λ abstraction. While the framework appears powerful, it currently lacks a denotational
model, and seems to require similar weaving glue code as scoped effects. The solution we
present in this paper does not require weaving glue code, and is given by a modular but
simple mapping onto algebraic effects and handlers.

Another recent paper by van den Berg & Schrijvers (2023) presents a unified framework
for describing higher-order effects, which can be specialized to recover several instances
such as Scoped Effects (Wu et al., 2014) or Latent Effects (van den Berg et al., 2021). They
present a generic free monad generated from higher-order signatures that coincides with
the type of Hefty trees that we present in Section 3. Their approach relies on a Generalized
Fold (Bird & Paterson, 1999) for describing semantics of handling operations, in contrast

33 A more extensive list of applications and frameworks can be found in Jeremy Yallop’s Effects Bibliography:
https://github.com/yallop/effects-bibliography

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

50 Submitted for publication.

to the approach in this paper, where we adopt a two-stage process of elaboration and han-
dling that can be expressed using the standard folds of first-order and higher-order free
monads. To explore how the use of generalized folds versus standard folds affects the
relative expressivity of approaches to higher-order effects is a subject of further study.

The equational framework we present in Section 5 is inspired by the work of Yang & Wu
(2021). Specifically, the notion of higher-order effect theory we formalized in Agda is an
extension of the notion of (first-order) effect theory they use. In closely related recent work
by Kidney et al. (2024), they present a formalization of first-order effect theories in Cubical
Agda (Vezzosi et al., 2021). Whereas our formalization requires extrinsic verification of
the equalities of an effect theory, they use quotient types as provided by homotopy type
theory (Program, 2013) and cubical type theory (Angiuli et al., 2021; Cohen et al., 2017)
to verify that handlers intrinsically respect their effect theories. They also present a Hoare
logic for verifying pre- and post-conditions. An interesting question for future work is
whether this logic and the framework of Kidney et al. (2024) could be extended to higher-
order effect theories.

In other recent work, Lindley et al. (2024) developed an equational reasoning system
for scoped effects. The system is based on so-called parameterized algebraic theories;
i.e., effect theories with two kinds of variables: one for values, and one for computations
representing scopes. They demonstrate how their framework supports key examples from
the literature: nondeterminism with semi-determinism, catching exceptions, and local state.
The framework we present in Section 5 supports variables ranging over either values or
computations (see, e.g., catch-return in Section 5.6). Our framework does not explicitly
distinguish these two kinds of variables. We demonstrate that our approach lets us verify
the laws of the higher-order exception catching effect (Section 5.9), and characterize the
semantics of composing higher-order effect theories (Section 5.8). Key to our approach
is that the correctness of elaborations is with respect to an algebraic effect theory. If this
underlying theory encodes a scoped syntax, we may need parameterized algebraic effect
theories à la Lindley et al. (2024) to properly characterize it.

The elaboration semantics of hefty algebras that we defined in Section 3 is based on ini-
tial algebra semantics—that is, it is given by a fold over an inductively defined syntax tree.
An alternative approach is Wand (1979) calls final algebra semantics, popularly known as
final encodings Kamin (1983) or finally tagless style (Carette et al., 2009). Here, the idea
is that, instead of declaring syntax as an inductive datatype, we declare it as a record type.
For example, consider the following record type:

record Symantics (Repr : Set→ Set) : Set1 where
field num : N→ Repr N

lam : (Repr A→ Repr B)→ Repr (A→ B)
app : Repr (A→ B)→ Repr A→ Repr B

Following Carette et al. (2009), this record is called Symantics because its interface gives
the syntax of the object language and its instances give the semantics. For example:

SetSymantics : Symantics id
num SetSymantics = id

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

Journal of Functional Programming 51

lam SetSymantics = id
app SetSymantics = $

A benefit of this approach is that it yields programs that can be executed more efficiently,
because compilers can more readily optimize programs given by a concrete record instance
than programs given by an inductive data type and a fold over it. These benefits extend
to effects. Devriese (2019) presents a final tagless encoding of monads in Haskell, using
dictionary passing. We expect that it is possible to encode modular elaborations of higher-
order effects in a similar final style; i.e., by programming against records that encode a
higher-order interface, and whose implementation is given by a free monad. This final
encoding should be semantically equivalent to initial encoding presented in this paper.

Looking beyond purely functional models of semantics and effects, there are also lines
of work on modular support for side effects in operational semantics (Plotkin, 2004).
Mosses’ Modular Structural Operational Semantics (Mosses, 2004) (MSOS) defines small-
step rules that implicitly propagate an open-ended set of auxiliary entities which encode
common classes of effects, such as reading or emitting data, stateful mutation, and even
control effects (Sculthorpe et al., 2015). The K Framework (Rosu & Serbanuta, 2010)
takes a different approach but provides many of the same benefits. These frameworks do
not encapsulate operational details but instead make it notationally convenient to program
(or specify semantics) with side-effects.

7 Conclusion

We have presented a new solution to the modularity problem with modeling and program-
ming with higher-order effects. Our solution allows programming against an interface of
higher-order effects in a way that provides effect encapsulation, meaning we can modularly
change the implementation of effects without changing programs written against the inter-
face and without changing the definition of any interface implementations. Furthermore,
the solution requires a minimal amount of glue code to compose language definitions.

We have shown that the framework supports modular reasoning on a par with algebraic
effects and handlers, albeit with some administrative overhead. While we have made use of
Agda and dependent types throughout this paper, the framework should be portable to less
dependently-typed functional languages, such as Haskell, OCaml, or Scala. An interesting
direction for future work is to explore whether the framework could provide a denotational
model for handling higher-order effects in standalone languages with support for effect
handlers.

Acknowledgements We thank the anonymous reviewers for their comments which helped
improve the exposition of the paper. Furthermore, we thank Nicolas Wu, Andrew Tolmach,
Peter Mosses, and Jaro Reinders for feedback on earlier drafts. This research was partially
funded by the NWO VENI Composable and Safe-by-Construction Programming Language
Definitions project (VI.Veni.192.259).

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

52 Submitted for publication.

References

Abbott, M. G., Altenkirch, T. and Ghani, N. (2003) Categories of containers. Gordon, A. D. (ed),
Foundations of Software Science and Computational Structures, 6th International Conference,
FOSSACS 2003 Held as Part of the Joint European Conference on Theory and Practice of
Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings. Lecture Notes in
Computer Science 2620, pp. 23–38. Springer.

Abbott, M. G., Altenkirch, T. and Ghani, N. (2005) Containers: Constructing strictly positive types.
Theor. Comput. Sci. 342(1):3–27.

Allais, G., Atkey, R., Chapman, J., McBride, C. and McKinna, J. (2021) A type- and scope-safe
universe of syntaxes with binding: their semantics and proofs. J. Funct. Program. 31:e22.

Angiuli, C., Brunerie, G., Coquand, T., Harper, R., (Favonia), K. H. and Licata, D. R. (2021) Syntax
and models of cartesian cubical type theory. Math. Struct. Comput. Sci. 31(4):424–468.

Arbib, M. A. and Manes, E. G. (1975) Arrows, Structures, and Functors: The Categorical Imperative.
Academic Press.

Awodey, S. (2010) Category Theory. 2nd edn. Oxford University Press, Inc.
Bauer, A. and Pretnar, M. (2015) Programming with algebraic effects and handlers. J. Log. Algebraic

Methods Program. 84(1):108–123.
Biernacki, D., Piróg, M., Polesiuk, P. and Sieczkowski, F. (2018) Handle with care: relational

interpretation of algebraic effects and handlers. Proc. ACM Program. Lang. 2(POPL):8:1–8:30.
Bird, R. S. and Paterson, R. (1999) Generalised folds for nested datatypes. Formal Aspects Comput.

11(2):200–222.
Brachthäuser, J. I., Schuster, P. and Ostermann, K. (2020) Effects as capabilities: effect handlers and

lightweight effect polymorphism. Proc. ACM Program. Lang. 4(OOPSLA):126:1–126:30.
Brady, E. C. (2013a) Idris, a general-purpose dependently typed programming language: Design and

implementation. J. Funct. Program. 23(5):552–593.
Brady, E. C. (2013b) Programming and reasoning with algebraic effects and dependent types. In:

Morrisett & Uustalu (2013).
Carette, J., Kiselyov, O. and Shan, C. (2009) Finally tagless, partially evaluated: Tagless staged

interpreters for simpler typed languages. J. Funct. Program. 19(5):509–543.
Castagna, G. and Gordon, A. D. (eds). (2017) Proceedings of the 44th ACM SIGPLAN Symposium on

Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017. ACM.
Cenciarelli, P. and Moggi, E. (1993) A syntactic approach to modularity in denotational semantics.
Claessen, K. (1999) A poor man’s concurrency monad. J. Funct. Program. 9(3):313–323.
Cohen, C., Coquand, T., Huber, S. and Mörtberg, A. (2017) Cubical type theory: A constructive

interpretation of the univalence axiom. FLAP 4(10):3127–3170.
Delaware, B., Keuchel, S., Schrijvers, T. and d. S. Oliveira, B. C. (2013) Modular monadic meta-

theory 319–330.
Devriese, D. (2019) Modular effects in haskell through effect polymorphism and explicit dictionary

applications: a new approach and the µverifast verifier as a case study. In: Eisenberg (2019).
Eisenberg, R. A. (ed). (2019) Proceedings of the 12th ACM SIGPLAN International Symposium on

Haskell, Haskell@ICFP 2019, Berlin, Germany, August 18-23, 2019. ACM.
Filinski, A. (1999) Representing layered monads. Appel, A. W. and Aiken, A. (eds), POPL ’99,

Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Antonio, TX, USA, January 20-22, 1999 pp. 175–188. ACM.

Fiore, M. P. and Staton, S. (2014) Substitution, jumps, and algebraic effects. Henzinger, T. A.
and Miller, D. (eds), Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014 pp. 41:1–41:10. ACM.

Hancock, P. G. and Setzer, A. (2000) Interactive programs in dependent type theory. Clote, P.
and Schwichtenberg, H. (eds), Computer Science Logic, 14th Annual Conference of the EACSL,
Fischbachau, Germany, August 21-26, 2000, Proceedings. Lecture Notes in Computer Science
1862, pp. 317–331. Springer.

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

Journal of Functional Programming 53

Hyland, M., Plotkin, G. D. and Power, J. (2006) Combining effects: Sum and tensor. Theor. Comput.
Sci. 357(1-3):70–99.

Jaskelioff, M. (2008) Monatron: An extensible monad transformer library. Scholz, S. and Chitil, O.
(eds), Implementation and Application of Functional Languages - 20th International Symposium,
IFL 2008, Hatfield, UK, September 10-12, 2008. Revised Selected Papers. Lecture Notes in
Computer Science 5836, pp. 233–248. Springer.

Jones, M. P. (1995) Functional programming with overloading and higher-order polymorphism.
Jeuring, J. and Meijer, E. (eds), Advanced Functional Programming, First International Spring
School on Advanced Functional Programming Techniques, Båstad, Sweden, May 24-30, 1995,
Tutorial Text. Lecture Notes in Computer Science 925, pp. 97–136. Springer.

Jones, M. P. and Duponcheel, L. (1993) Composing Monads. Research Report YALEU/DCS/RR-
1004. Yale University, New Haven, Connecticut, USA.

Kamin, S. N. (1983) Final data types and their specification. ACM Trans. Program. Lang. Syst.
5(1):97–123.

Kammar, O., Lindley, S. and Oury, N. (2013) Handlers in action. In: Morrisett & Uustalu (2013).
Kidney, D. O., Yang, Z. and Wu, N. (2024) Algebraic effects meet Hoare logic in Cubical Agda.

Proc. ACM Program. Lang. 8(POPL):1663–1695.
Kiselyov, O. and Ishii, H. (2015) Freer monads, more extensible effects. Lippmeier, B. (ed),

Proceedings of the 8th ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC,
Canada, September 3-4, 2015 pp. 94–105. ACM.

Leijen, D. (2017) Type directed compilation of row-typed algebraic effects. In: Castagna & Gordon
(2017).

Levy, P. B. (2006) Call-by-push-value: Decomposing call-by-value and call-by-name. High. Order
Symb. Comput. 19(4):377–414.

Liang, S., Hudak, P. and Jones, M. P. (1995) Monad transformers and modular interpreters.
Cytron, R. K. and Lee, P. (eds), Conference Record of POPL’95: 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Francisco, California, USA, January
23-25, 1995 pp. 333–343. ACM Press.

Lindley, S., McBride, C. and McLaughlin, C. (2017) Do be do be do. In: Castagna & Gordon (2017).
Lindley, S., Matache, C., Moss, S. K., Staton, S., Wu, N. and Yang, Z. (2024) Scoped effects

as parameterized algebraic theories. Weirich, S. (ed), Programming Languages and Systems -
33rd European Symposium on Programming, ESOP 2024, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg,
April 6-11, 2024, Proceedings, Part I. Lecture Notes in Computer Science 14576, pp. 3–21.
Springer.

Martin-Löf, P. (1984) Intuitionistic type theory. Studies in proof theory, vol. 1. Bibliopolis.
Meijer, E., Fokkinga, M. M. and Paterson, R. (1991) Functional programming with bananas, lenses,

envelopes and barbed wire. Hughes, J. (ed), Functional Programming Languages and Computer
Architecture, 5th ACM Conference, Cambridge, MA, USA, August 26-30, 1991, Proceedings.
Lecture Notes in Computer Science 523, pp. 124–144. Springer.

Moggi, E. (1989a) An Abstract View of Programming Languages. Tech. rept. ECS-LFCS-90-113.
Edinburgh University, Department of Computer Science.

Moggi, E. (1989b) Computational lambda-calculus and monads. Proceedings of the Fourth Annual
Symposium on Logic in Computer Science (LICS ’89), Pacific Grove, California, USA, June 5-8,
1989 pp. 14–23. IEEE Computer Society.

Morris, J. G. and McKinna, J. (2019) Abstracting extensible data types: or, rows by any other name.
Proc. ACM Program. Lang. 3(POPL):12:1–12:28.

Morrisett, G. and Uustalu, T. (eds). (2013) ACM SIGPLAN International Conference on Functional
Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013. ACM.

Mosses, P. D. (2004) Modular structural operational semantics. J. Log. Algebraic Methods Program.
60-61:195–228.

Pfenning, F. and Elliott, C. (1988) Higher-order abstract syntax. Wexelblat, R. L. (ed), Proceedings
of the ACM SIGPLAN’88 Conference on Programming Language Design and Implementation

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

54 Submitted for publication.

(PLDI), Atlanta, Georgia, USA, June 22-24, 1988 pp. 199–208. ACM.
Pierce, B. C. (1991) Basic category theory for computer scientists. Foundations of computing. MIT

Press.
Piróg, M. and Gibbons, J. (2014) The coinductive resumption monad. Jacobs, B., Silva, A.

and Staton, S. (eds), Proceedings of the 30th Conference on the Mathematical Foundations of
Programming Semantics, MFPS 2014, Ithaca, NY, USA, June 12-15, 2014. Electronic Notes in
Theoretical Computer Science 308, pp. 273–288. Elsevier.

Piróg, M., Schrijvers, T., Wu, N. and Jaskelioff, M. (2018) Syntax and semantics for operations with
scopes. Dawar, A. and Grädel, E. (eds), Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018 pp. 809–818. ACM.

Plotkin, G. D. (2004) A structural approach to operational semantics. J. Log. Algebraic Methods
Program. 60-61:17–139.

Plotkin, G. D. and Power, J. (2002) Notions of computation determine monads. Nielsen, M. and
Engberg, U. (eds), Foundations of Software Science and Computation Structures, 5th International
Conference, FOSSACS 2002. Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2002 Grenoble, France, April 8-12, 2002, Proceedings. Lecture
Notes in Computer Science 2303, pp. 342–356. Springer.

Plotkin, G. D. and Power, J. (2003) Algebraic operations and generic effects. Appl. Categorical
Struct. 11(1):69–94.

Plotkin, G. D. and Pretnar, M. (2009) Handlers of algebraic effects. Castagna, G. (ed), Programming
Languages and Systems, 18th European Symposium on Programming, ESOP 2009, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK,
March 22-29, 2009. Proceedings. Lecture Notes in Computer Science 5502, pp. 80–94. Springer.

Poulsen, C. B. and van der Rest, C. (2023) Hefty algebras: Modular elaboration of higher-order
algebraic effects. Proc. ACM Program. Lang. 7(POPL):1801–1831.

Pretnar, M. (2015) An introduction to algebraic effects and handlers. invited tutorial paper. Ghica,
D. R. (ed), The 31st Conference on the Mathematical Foundations of Programming Semantics,
MFPS 2015, Nijmegen, The Netherlands, June 22-25, 2015. Electronic Notes in Theoretical
Computer Science 319, pp. 19–35. Elsevier.

Program, T. U. F. (2013) Homotopy Type Theory: Univalent Foundations of Mathematics. Institute
for Advanced Study.

Rosu, G. and Serbanuta, T. (2010) An overview of the K semantic framework. J. Log. Algebraic
Methods Program. 79(6):397–434.

Schmidt, D. (1986) Denotational Semantics. Allyn and Bacon.
Schrijvers, T., Wu, N., Desouter, B. and Demoen, B. (2014) Heuristics entwined with handlers

combined: From functional specification to logic programming implementation. Chitil, O., King,
A. and Danvy, O. (eds), Proceedings of the 16th International Symposium on Principles and
Practice of Declarative Programming, Kent, Canterbury, United Kingdom, September 8-10, 2014
pp. 259–270. ACM.

Schrijvers, T., Piróg, M., Wu, N. and Jaskelioff, M. (2019) Monad transformers and modular
algebraic effects: what binds them together. In: Eisenberg (2019).

Sculthorpe, N., Torrini, P. and Mosses, P. D. (2015) A modular structural operational semantics for
delimited continuations. Danvy, O. and de’Liguoro, U. (eds), Proceedings of the Workshop on
Continuations, WoC 2016, London, UK, April 12th 2015. EPTCS 212, pp. 63–80.

Steele Jr., G. L. (1994) Building interpreters by composing monads. Boehm, H., Lang, B. and
Yellin, D. M. (eds), Conference Record of POPL’94: 21st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Portland, Oregon, USA, January 17-21, 1994 pp. 472–
492. ACM Press.

Swierstra, W. (2008) Data types à la carte. J. Funct. Program. 18(4):423–436.
Taha, W. and Sheard, T. (2000) Metaml and multi-stage programming with explicit annotations.

Theor. Comput. Sci. 248(1-2):211–242.
Thielecke, H. (1997) Categorical Structure of Continuation Passing Style. PhD thesis, University of

Edinburgh.

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

Journal of Functional Programming 55

van den Berg, B. and Schrijvers, T. (2023) A framework for higher-order effects & handlers. CoRR
abs/2302.01415.

van den Berg, B., Schrijvers, T., Poulsen, C. B. and Wu, N. (2021) Latent effects for reusable lan-
guage components. Oh, H. (ed), Programming Languages and Systems - 19th Asian Symposium,
APLAS 2021, Chicago, IL, USA, October 17-18, 2021, Proceedings. Lecture Notes in Computer
Science 13008, pp. 182–201. Springer.

van der Rest, C. and Poulsen, C. B. (2024) GitHub - heft-lang/hefty-equations: Modular reasoning
about (elaborations of) higher-order effects — github.com. https://github.com/heft-lang/
hefty-equations.

van der Rest, C., Poulsen, C. B., Rouvoet, A., Visser, E. and Mosses, P. D. (2022) Intrinsically-typed
definitional interpreters à la carte. Proc. ACM Program. Lang. 6(OOPSLA2):1903–1932.

Vezzosi, A., Mörtberg, A. and Abel, A. (2021) Cubical agda: A dependently typed programming
language with univalence and higher inductive types. J. Funct. Program. 31:e8.

Wadler, P. (1992) The essence of functional programming. Sethi, R. (ed), Conference Record
of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Albuquerque, New Mexico, USA, January 19-22, 1992 pp. 1–14. ACM Press.

Wadler, P., Kokke, W. and Siek, J. G. (2020) Programming Language Foundations in Agda.
Wand, M. (1979) Final algebra semantics and data type extensions. J. Comput. Syst. Sci. 19(1):27–44.
Wu, N. and Schrijvers, T. (2015) Fusion for free - efficient algebraic effect handlers. Hinze, R. and

Voigtländer, J. (eds), Mathematics of Program Construction - 12th International Conference, MPC
2015, Königswinter, Germany, June 29 - July 1, 2015. Proceedings. Lecture Notes in Computer
Science 9129, pp. 302–322. Springer.

Wu, N., Schrijvers, T. and Hinze, R. (2014) Effect handlers in scope. Swierstra, W. (ed), Proceedings
of the 2014 ACM SIGPLAN symposium on Haskell, Gothenburg, Sweden, September 4-5, 2014 pp.
1–12. ACM.

Yang, Z. and Wu, N. (2021) Reasoning about effect interaction by fusion. Proc. ACM Program.
Lang. 5(ICFP):1–29.

Yang, Z., Paviotti, M., Wu, N., van den Berg, B. and Schrijvers, T. (2022) Structured handling of
scoped effects. Sergey, I. (ed), Programming Languages and Systems - 31st European Symposium
on Programming, ESOP 2022, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings. Lecture
Notes in Computer Science 13240, pp. 462–491. Springer.

Zhang, Y. and Myers, A. C. (2019) Abstraction-safe effect handlers via tunneling. Proc. ACM
Program. Lang. 3(POPL):5:1–5:29.

	Introduction
	Background: Algebraic Effects and Handlers
	The Modularity Problem with Higher-Order Operations
	Solving the Modularity Problem: Elaboration Algebras
	Contributions

	Algebraic Effects and Handlers in Agda
	Algebraic Effects and The Free Monad
	Row Insertions and Smart Constructors
	Fold and Monadic Bind for =0mu=0muFree
	Effect Handlers
	The Modularity Problem with Higher-Order Effects, Revisited
	Scoped Effects and Handlers
	Scoped Programs
	Scoped Effect Handlers
	Weaving
	Discussion and Limitations

	Hefty Trees and Algebras
	Generalizing =0mu=0muFree to Support Higher-Order Operations
	Programs with Algebraic and Higher-Order Effects
	Higher-Order Operations with Polymorphic Return Types
	Hefty Algebras
	Discussion and Limitations

	Examples
	 as a Higher-Order Operation
	Call-by-Value
	Call-by-Name

	Optionally Transactional Exception Catching
	Sub/Jump
	Optionally Transactional Exception Catching

	Logic Programming
	Concurrency

	Modular Reasoning for Higher-Order Effects
	Theories of Algebraic Effects
	Modal Necessity
	Effect Theories
	Syntactic Equivalence of Effectful Programs
	Handler Correctness
	Theories of Higher-Order Effects
	Equivalence of Programs with Higher-Order Effects
	Correctness of Elaborations
	Proving Correctness of Elaborations

	Related Work
	Conclusion

