
1

A completely unique account of enumeration

ANONYMOUS AUTHOR(S)

How can we enumerate the inhabitants of an algebraic datatype? This paper explores a datatype generic
solution that works for all regular types and indexed families. The enumerators presented here are provably
both complete and unique—they will eventually produce every value exactly once—and fair—they avoid bias
when composing enumerators. Finally, these enumerators memoise previously enumerated values whenever
possible, thereby avoiding repeatedly recomputing recursive results.

1 INTRODUCTION
To reduce the cost of formal verification, lightweight techniques—such as program testing—can
help catch some errors early. Property-based testing is one approach to software testing that has
been popularised by libraries such as QuickCheck [Claessen and Hughes 2000]. Property-based
testing libraries try to find counterexamples that falsify a property that is expected to hold by
passing automatically generated inputs to the programs being tested. If no counterexample can
be found, the property may not hold in general—but in practice many errors in the code and its
specification can be found in this fashion.

The central technology that underlies property-based testing libraries is the generation of suit-
able test values to serve as input to the programs being tested. Rather than generate random input
values as QuickCheck does, this paper explores how to enumerate the values inhabiting a given
datatype. While this is not a new problem, or even an entirely new idea—this paper makes several
novel contributions:

• We give a datatype generic account of the enumeration of both regular datatypes (Section 3)
and indexed families (Section 4). Most existing approaches to enumerating datatypes rely
on some form of user-defined size bound and the datatype generic case is rarely consid-
ered. We show how to make the recursive structure of enumerators explicit, thereby cleanly
separating the definition of enumerators from their execution. This allows for different inter-
pretations of enumerators, including a coinductive stream of values, or indeed, the finite set
of elements up to some bound. Furthermore, while there is large body of work on enumer-
ating regular types [Braquehais 2017; Duregård et al. 2012; Runciman et al. 2008], the case
for indexed families has remained unexplored until now.

• We identify and establish properties of these enumerators and provide a formalised proof
that these properties hold for all of our generic definitions. While some of these properties
are mentioned or established informally in existing work, their mechanization has lagged
behind. We establish several different properties of all of our enumerators: completeness and
uniqueness for both regular datatypes and indexed families (Sections ?? and ??), and the
fairness of the enumerators we used in our generic definitions (Section 2).

• Finally, we show how naive enumeration has an efficiency problem: the repeated recompu-
tation of recursive results. We can address this by memoising previous computations readily
enough for regular datatypes (Section 3), extending these results to indexed families is less
obvious. If we restrict ourselves to regular indices, however, we can show how to construct a
generic trie to memoise the enumeration of indexed families (Section 5). Finally, we illustrate
how these generic definitions can be used to enumerate well typed expressions (Section 6).

2021. 2475-1421/2021/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

https://doi.org/

1:2 Anon.

About this paper. All definitions and proofs shown or mentioned in this paper have been for-
malised in Agda [Norell 2009], although we have taken some notational liberties to improve the
presentation: we often omit universally quantified implicit arguments, making liberal use of Agda’s
variable construct. Although we use Agda in this paper to present our ideas, we believe that they
are applicable in other proof assistants using dependent types, such as Coq [Coq Development
Team 2020], Idris [Brady 2013], F★ [Swamy et al. 2016], or Lean [de Moura et al. 2015].

2 FAIR AND COMPLETE ENUMERATION
In this section, we will define the key types, combinators, and properties of enumerators that we
will use throughout this paper. What does it mean to enumerate the inhabitants of a type A? The
simplest definition might be some list of values of A:

Enumerator : Set → Set
Enumerator A = List A

Yet many recursive datatypes, such as trees or lists, have an infinite number of inhabitants. Hence
a (finite) list will not suffice; we could use a (potentially infinite) ‘co-list’ instead, but instead we
will choose a slightly different approach. The central type of this paper, Enumerator, is defined as
follows:

Enumerator : Set → Set → Set
Enumerator A B = List A → List B

We define an enumerator as a function from lists to lists. Given a list of structurally ‘smaller’ ingre-
dients of type A that we have already constructed, an enumerator builds a list containing ‘larger’
elements of type B. For the moment, however, we will not use argument list passed to an enumer-
ator until considering the enumeration of recursive datatypes (Section 2.3).

2.1 Enumerator Combinators
The simplest enumerators are the empty enumerator (producing no elements) and singleton enu-
merators (producing exactly one element):

∅ : Enumerator A B
∅ = const []

pure : B → Enumerator A B
pure x = const [x]

Both these enumerators ignore their parameter and immediately return a list.
Furthermore, enumerators are functorial in their second argument; we can define the required

operation (⟨$⟩) by mapping over the resulting list of values:
⟨$⟩ : (A → B) → Enumerator C A → Enumerator C B
f ⟨$⟩ e = map f ∘ e

Next, we would like to combine the elements produced by two enumerations using the following
choice operator:

⟨∣⟩ : (e₁ e₂ : Enumerator A B) → Enumerator A B

The obvious way to define this operation, is by appending the resulting lists:
(e₁ ⟨∣⟩ e₂) as = (e₁ as) ++ (e₂ as)

At this point, however, it is worth thinking about the properties that we expect this combinator
to satisfy. One important property is that each element produced by either e₁ or e₂ should also

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

A completely unique account of enumeration 1:3

occur in e₁ ⟨∣⟩ e₂. To reason about the elements produced by our enumerators, we will use the _∈_
relation, capturing when an element occurs somewhere in a list:

data _∈_ : A → List A → Set where
Here : x ∈ (x :: xs)
There : x ∈ xs → x ∈ (y :: xs)

It is easy to prove that the append operator on lists preserves this relation:
inl : x ∈ xs → x ∈ (xs ++ ys)
inr : y ∈ ys → y ∈ (xs ++ ys)

In practice, however, combining lists in this fashion is biased: all the elements of xs will appear in
the resulting enumeration before the first element of ys. What property can we use to rule out this
definition?

Fairness. To avoid this bias, we begin by defining an ordering on the elements of our enumerations.
To do so, we begin by mapping each position in a list to its corresponding natural number:

∣_∣ : x ∈ xs → N
∣ Here ∣ = zero
∣ There p ∣ = succ ∣ p ∣

Now we can compare two positions—not necessarily in the same list—by using the familiar order-
ing on their underlying natural numbers:

≺ : x ∈ xs → y ∈ ys → Set
p ≺ q = ∣ p ∣ < ∣ q ∣

Now that we have an order on positions, we can return to our original problem: formulating and
proving fairness of the choice operator. The inl and inr lemmas above prove that the ++ operation
does not discard elements; constructively, however, we can also regard them as functions that
compute where the elements of xs and ys will appear in the resulting list. Using our ordering on
positions, we can now use the inl and inr lemmas to formulate the following fairness properties,
capturing the intuition that the ++ operation should respect the ordering of elements in its argument
lists:

(p : x ∈ xs) (q : y ∈ ys) → p ≺ q → inl p ≺ inr q
(p : x ∈ xs) (q : y ∈ ys) → p ≺ q → inr p ≺ inl q

The ++ operator satisfies the first property, but not the second: the first element of ys will come
after the last element of xs in xs ++ ys. As the ++ operation does not respect the order of elements
of its argument lists, we consider it to be unfair.

Fair choice. So what is a fair notion of choice operator? Unsurprisingly, the solution is to draw
elements, alternating between the two argument lists:

interleave : List A → List A → List A
interleave [] ys = ys
interleave (x :: xs) ys = x :: interleave ys xs

In contrast to the list append function, interleave does respect the order of elements in the resulting
list. To establish this, we begin by showing that it does not discard elements:

interleave∈-left : (xs ys : List A) → x ∈ xs → x ∈ interleave xs ys
interleave∈-right : (xs ys : List A) → y ∈ ys → y ∈ interleave xs ys

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

1:4 Anon.

In contrast to appending lists, however, interleaving lists is fair, as witnessed by a pair of lemmas
with the following types:

(p : x ∈ xs) (q : y ∈ ys) → p ≺ q → (interleave∈-left xs ys p) ≺ (interleave∈-right xs ys q)
(p : x ∈ xs) (q : y ∈ ys) → p ≺ q → (interleave∈-right ys xs p) ≺ (interleave∈-left ys xs q)

We can additionally prove the other two possible combinations—left-left and right-right—hold as
expected. Note that the append operator also satisfies both these properties.

Using the interleave function, we can now define a fair choice operation on enumerators:
⟨∣⟩ : (e₁ e₂ : Enumerator A B) → Enumerator A B
e₁ ⟨∣⟩ e₂ = 𝜆 as → interleave (e₁ as) (e₂ as)

We can use the choice operation to enumerate types that have more than one constructor, such as
the booleans:

bools : Enumerator A Bool
bools = pure false ⟨∣⟩ pure true

2.2 A fair pair
Besides the choice operator, ⟨∣⟩, we would like to compute the cartesian product of two enumera-
tors:

pair : Enumerator A B → Enumerator A C → Enumerator A (B × C)
The usual definition of the cartesian product of two lists relies on the concatMap function:

cp : List A → List B → List (A × B)
cp xs ys = concatMap (𝜆 x → map (𝜆 y → x , y) ys) xs

Yet concatenation-based cartesian products are not a suitable choice if we care about the fairness
of our enumerators. Just as the append operator is biased towards the first list, this definition of
the cartesian product using concatenation will favour pairs whose first component appears earlier
on in the first argument list xs. Instead, we introduce the following custom prod function, inspired
by the product of power series [?]:

prod : List A → List B → List (A × B)
prod [] ys = []
prod (x :: xs) [] = []
prod (x :: xs) (y :: ys) = (x , y) :: interleave (map (𝜆 y → (x , y)) ys) (prod xs (y :: ys))

The prod function also computes the cartesian product of its two argument lists. The interesting
case, when both lists are non-empty, uses the interleave function to alternate between the elements
with x as their first component and the elements whose first component is drawn from the tail xs.
By interleaving these two intermediate lists, we can show that the prod function is fair.

To make this more precise, we need to start by showing that the prod function will produce all
possible elements of the cartesian product of its two inputs:

prod∈ : (xs : List A) → (ys : List B) → x ∈ xs → y ∈ ys → (x , y) ∈ prod xs ys

We can now formulate and prove the desired fairness property using the above lemma:
prodFair : (p₁ : x₁ ∈ xs) (p₂ : y₁ ∈ ys) (q₁ : x₂ ∈ xs) (q₂ : y₂ ∈ ys) →

p₁ ≺ q₁ → p₂ ≺ q₂ → prod∈ xs ys p₁ p₂ ≺ prod∈ xs ys q₁ q₂

The proof itself follows by induction over the positions passed as arguments. Although it requires
several auxiliary lemmas about the fairness of map and interleave, the proof itself is not particu-
larly complicated.The only non-trivial insight required is that prod∈ is a monotonically increasing

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

A completely unique account of enumeration 1:5

function: if an element x occurs in the i-th position in one of the input lists, pairs with the value
x as their first component will not occur before position i in the list of pairs produced. Using this
prod function, we can define the fair pairing operation on enumerators as follows:

pair : Enumerator A B → Enumerator A C → Enumerator A (B × C)
pair e₁ e₂ = λ cs → prod (e₁ cs) (e₂ cs)

Finally, we can use the prod function to also define the familiar applicative combinator:
⊛ : Enumerator C (A → B) → Enumerator C A → Enumerator C B
e₁ ⊛ e₂ = λ cs → map apply (prod (e₁ cs) (e₂ cs))

where
apply : (A → B) × A → B
apply (f , x) = f x

Although we will not use this combinator in our generic constructions, it can be useful for some
of the example enumerators we will define by hand in the remainder of this section.

2.3 Recursive enumerators
How can we define an enumerator for a recursive type? This will be where we use the additional
argument passed to each enumerator. Consider the following datatype for binary trees:

data Tree : Set where
Leaf : Tree
Node : Tree → Tree → Tree

If we naively try to compute the list of trees of a given size, we might use the applicative instance
for lists to write:

list-trees : N → List Tree
list-trees zero = []
list-trees (succ n) = [Leaf] ++ Node ⟨$⟩ list-trees n ⊛ list-trees n

In this way, a call to list-trees nwill compute a list of trees with depth at most n. There is, however,
a problem with this definition: the two calls to trees n give rise to an exponentially slow function.
Fortunately, there is a well-known solution: we can pass the result of the previous recursive as an
argument to our enumerator, avoiding the superfluous recomputation.This is where our additional
list argument in the definition of the enumerator type will finally be used.

Firstly, we can define the following trivial enumerator, rec, that simply returns its argument list:
rec : Enumerator A A
rec = 𝜆 as → as

We can now use almost all the combinators we have seen so far to define a ‘recursive’ enumerator
for trees:

trees : Enumerator Tree Tree
trees = pure Leaf ⟨∣⟩ Node ⟨$⟩ rec ⊛ rec

Note that this enumerator is not really recursive: it simply defines a function List Tree →
List Tree. By iteratively applying this function to an initially empty list we can create lists of
increasingly deep trees. More generally, we can define the enumerate function that produces a fi-
nite list of elements of type A from its argument enumerator by iterating its argument enumerator
a fixed number of times.

enumerate : Enumerator A A → N → List A
enumerate e n = iterate n e []

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

1:6 Anon.

iterate : ∀ {A} → N → (A → A) → A → A
iterate zero f x = x
iterate (succ n) f x = f (iterate n f x)

Crucially, we avoid unnecessary recursive calls in this style, as we saw in the list-trees function.
Here all the ‘smaller’ trees are passed as an argument to the trees function; the trees function itself
describes a single step in the generation process, assembling larger trees from the subtrees in its
argument list. Phrasing our enumerators in this style ensures that we can efficiently enumerate re-
cursive datatypes in a datatype generic fashion, reusing previous computations whenever possible.
Note that there are other ways to apply our enumerator functions, such as producing an infinite
stream of lists of increasingly ‘large’ elements:

stream : Enumerator A A → Stream (List A) ∞
stream e = Codata.Stream.iterate e []

For the purpose of this paper, however, we will only concern ourselves with the enumerate func-
tion that produces a finite approximation of the elements of a given datatype.

2.4 Enumerator completeness & uniqueness
The types of our enumerators does not guarantee anything about their behaviour. For example,
the following enumerator for the booleans is type correct, but wrong:

boolsWrong₁ : Enumerator Bool Bool
boolsWrong₁ = ∅

To rule out such definitions, we identify the key property that our enumerators must satisfy: com-
pleteness. An enumerator is complete when every possible value of a type will eventually be gen-
erated. In the remainder of this section, we will make this precise.

We begin by defining the following Occurs relation:
data Occurs (x : A) (e : Enumerator A A) : Set where

occurs : (n : N) → x ∈ enumerate e n → Occurs x e

When there is some natural number n such that x ∈ enumerate e n, we say that x occurs in the
enumerator e. An enumerator e is complete when each x : A occurs in e:

Complete : Enumerator A A → Set
Complete e = ∀ x → Occurs x e

To prove an enumerator e is Complete amounts to showing that for every value x : A, we will
eventually produce x in the list enumerator e n for large enough values of n.

To demonstrate how completeness proofs may help to weed out erroneous, but type-correct
definitions, we consider the completeness proof for the simple enumerator of the booleans, bools,
that we saw previously:

bools-complete : Complete bools
bools-complete false = occurs 1 (Here)
bools-complete true = occurs 1 (There Here)

On the other hand, it is not possible to construct a proof that boolsWrong₁ is a complete enumer-
ator; a fortiori, we can prove that boolsWrong₁ is not complete.

Besides completeness, we will define enumerators that list elements without duplicates. The
following enumerator for booleans is complete:

boolsWrong₂ : Enumerator Bool Bool
boolsWrong₂ = λ bs → true :: true :: false :: []

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

A completely unique account of enumeration 1:7

Yet this enumerator contains two occurrences of true. To rule out enumerating the same element
more than once, our enumerators will only ever produce lists that are unique:

Unique : List A → Set
Unique xs = (x : A) → (p₁ p₂ : x ∈ xs) → p₁ ≡ p₂

All our enumerators will preserve uniqueness: given a list of unique ‘smaller’ terms as its input,
our enumerators will produce a new unique list of elements.

In what follows, wewill rarely write completeness and uniqueness proofs by hand, but rather de-
fine generic enumerators that are built from the combinators presented here that guarantee these
properties hold. It is important to stress that the uniqueness and completeness are extensional
properties that we can verify within our proof assistant. Fairness, on the other hand, is an inten-
sional property that we can prove of all the combinators we use—but cannot be observed from an
enumerator’s input-output behaviour alone.

3 GENERIC ENUMERATION OF REGULAR TYPES
In the previous section, we defined example enumerators for booleans and trees. In this section,
we show to generalise these results and write a generic enumerator for a collection of simple
algebraic datatypes; that is, we show how suitable enumerators can be generated by induction
over the structure of such types.

To achieve this, we will reify a collection of types as values of some universe U : Set. A universe
is accompanied by a semantics, ⟦_⟧, that interprets values inU as an Agda type. To define a generic
enumerator (approximately) amounts to defining a function:

enumerate : (u : U) → Enumerator ⟦ u ⟧ ⟦ u ⟧

To illustrate the general approach, we start by defining enumerators for the regular types before
moving on to a more complicated universe in the next section. Despite its simplicity, this universe
is able to describe many familiar algebraic datatypes.

3.1 Regular types
The universe of regular types contains the empty type (zero), unit type (one), recursion (var) and
type constants (k), and is closed under products (⊗) and coproducts (⊕). We describe regular types
as values of the description type Desc:

data Desc (P : Set → Set) : Set1 where
zero : Desc P
one : Desc P
var : Desc P
k : (S : Set) → {P S} → Desc P
⊗ : (D₁ D₂ : Desc P) → Desc P
⊕ : (D₁ D₂ : Desc P) → Desc P

This definition is mostly standard. Descriptions have an extra parameter, P : Set → Set, that
describes what (if any) extra information needs to be recorded for the constants. In what follows,
we will use this to require information about how to enumerate the inhabitants of type constants
that appear in a description. Note that the Desc type, as presented here, is large as the constant
constructor k quantifies over all types. To avoid size problems, this construction can by stratified
by only drawing constants drawn from some smaller universe U : Set.

To write generic programs, we need to give an interpretation (or semantics) to descriptions. We
define the semantics of descriptions as a functor Set → Set in the usual fashion.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

1:8 Anon.

⟦_⟧ : Desc P → (Set → Set)
⟦ zero ⟧ X = ⊥
⟦ one ⟧ X = ⊤
⟦ var ⟧ X = X
⟦ k S ⟧ X = S
⟦ D₁ ⊗ D₂ ⟧ X = ⟦ D₁ ⟧ X × ⟦ D₂ ⟧ X
⟦ D₁ ⊕ D₂ ⟧ X = ⟦ D₁ ⟧ X ⊎ ⟦ D₂ ⟧ X

This definition is entirely standard. By taking the fix-point of these functors, we can model simple
recursive datatypes such trees and lists. The Fix datatype ties the recursive knot:

data Fix (D : Desc P) : Set where
In : ⟦ D ⟧ (Fix D) → Fix D

This explicit description of datatypes enables us to define (generic) functions by pattern matching
on the constructors of Desc.

Example: Lists. As an example, we consider how to encode the List type as a value of Desc:
data List (A : Set) : Set where

[] : List A
:: : A → List A → List A

We choose the description ListD : Set → Desc such that Fix (ListD A) is isomorphic to List A:
ListD : Set → Desc (const ⊤)
ListD A = one ⊕ (k A ⊗ var)

The description ListD consists of a coproduct (or choice) of either one (representing the empty list,
[]), or a pair consisting of a constant value of type A, and a recursive position (corresponding to
::). We can describe the singleton list 0 :: [], for example, as a value of type Fix (ListD N):

consZeroNil = In (inj₂ (0 , In (inj₁ tt)))

Here tt is the single constructor of the unit type ⊤; inj₁ and inj₂ are the two constructors for a
disjoint sum of types.

3.2 A Generic Enumerator For Regular Types
We are now ready to define a generic enumerator for regular types. Down the line, this means that
we give a definition for an generic enumerator, genumerator, with the following type:

genumerator : (D : Desc List) → Enumerator (Fix D) (Fix D)

Given any description D we will enumerate the recursive datatypes that can be built from this
description. Note that we expect a description, D : Desc List, that already stores a (finite) list of
all the constant types that occur in our descriptions.

We cannot define this genumerator function directly. In particular, becauseDesc is closed under
products and coproducts, we need to recurse over the description as we define its enumerator. To
do so, we must be careful to separate the description under consideration (D) from the description
that describes the type of recursive positions (D’):

enumerator : ∀ (D : Desc List) {D’ : Desc List} → Enumerator (Fix D’) (⟦ D ⟧ (Fix D’))

This is a common pattern when defining such generic functions—passing two descriptions to a
generic function: one representing the top-level description; whereas the other description is tra-
versed recursively.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

A completely unique account of enumeration 1:9

The definition of this enumerator function is now immediate, using all the auxiliary functions
defined in the previous section:

enumerator : ∀ (D : Desc List) {D’ : Desc List} → Enumerator (Fix D’) (⟦ D ⟧ (Fix D’))
enumerator zero = ∅
enumerator one = pure tt
enumerator (k A {as}) = const as
enumerator var = rec
enumerator (D₁ ⊕ D₂) = (inj₁ ⟨$⟩ enumerator D₁) ⟨∣⟩ (inj₂ ⟨$⟩ enumerator D₂)
enumerator (D₁ ⊗ D₂) = pair (enumerator D₁) (enumerator D₂)

For the sake of completeness, we briefly go through the individual cases one by one. As there are no
inhabitants of the empty type, the case for zero returns the empty enumerator, ∅. Similarly, there
is a single inhabitant of the unit type. In the case for one we therefore return the singleton list
with the value tt. When we encounter a constant type A, we have an implicit argument as : List A.
We can simply return this list of values, ignoring the list of subtrees we receive as an additional
argument.

This leaves the three most interesting cases: recursive positions, coproducts and products. When
we encounter a recursive position designated by the var constructor, we return the list of ‘smaller’
values that we are passed as an argument. This is similar to how we generated subtrees for the
Node constructor in enumerator for binary trees in the previous section. In the case for coproducts,
D₁ ⊕ D₂, we make two recursive calls on both D₁ and D₂, map the injections inj₁ and inj₂ over
these results, and interleave the resulting values. Finally, in the case for products takes a Cartesian
product of the two recursive calls.The pair function that computes this Cartesian product is defined
in Section 2.

Using the enumerator function, we can now write our generic enumerator as follows:
genumerator : (D : Desc List) → Enumerator (Fix D) (Fix D)
genumerator D = 𝜆 ts → map In (enumerator D ts)

This function simply calls the enumerator function with the description D. This will result in a list
of values of type ⟦ D ⟧ (Fix D); mapping the In constructor over this list of values produces the
desired List (Fix D).

Example: enumerating lists. To illustrate our generic enumerator in action, we can revisit the
description of lists we saw previously. We begin by defining the following description for lists of
a given type A:

ListD : {A : Set} → List A → Desc List
ListD {A} as = one ⊕ (k A {as} ⊗ var)

The ListD function requires an argument as : List A, enumerating the elements of A. We can use
this description to enumerate all lists up to some length as follows:

lists : {A : Set} → (xs : List A) → N → List (Fix (ListD xs))
lists xs = enumerate (genumerator (ListD xs))

For example, the following expression enumerates all lists consisting of at most three constructors,
containing the characters 'a' and 'b':

lists ('a' :: ('b' :: [])) 3

This example illustrates most of the constructors of our Desc type. In particular, we can use the
enumerators for constant types to generate primitive values such as characters, that have no asso-
ciated datatype declaration.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

1:10 Anon.

In the enumerator for lists, we assumed that we had a list of elements enumerating the ele-
ments of the list. This is fine if we aim to draw elements from some (finite) fixed set, such as ASCII
characters. Alternatively, however, we may want to pass a size-bounded finite list, N → List A,
enabling the enumeration of lists with elements drawn from an infinite type. To do so, we would
only need to change the type signature of the enumerator function, updating the implicit infor-
mation stored for constant types. In the genumerator and enumerate functions, this size bound
can then be passed on accordingly. For sake of simplicity, however, we have chosen the more
simple approach—restricting ourselves to lists of constant types—as this keeps the execution of
enumerators (using a size bound) and their definition clearly separated.

3.3 Completeness & uniqueness
Completeness. We now briefly sketch the completeness proof, establishing that our generic enumer-
ators will eventually produce every possible value. Proving our generic enumerators are complete
amounts to showing that for all x : Fix D there is a number n : N such that x occurs in the
list enumerate (genumerator D) n. It should not come as a surprise that the required number n
corresponds to the number of times we need to unroll the fix-point to produce x. We refer to this
number as the depth of a given tree; it can be readily computed as follows:

mutual
depth : (D : Desc P) → {D’ : Desc P} → ⟦ D ⟧ (Fix D’) → N
depth zero = 0
depth one = 0
depth (k) = 0
depth var x = gdepth x
depth (D₁ ⊕ D₂) (inj₁ x) = depth D₁ x
depth (D₁ ⊕ D₂) (inj₂ y) = depth D₂ y
depth (D₁ ⊗ D₂) (x , y) = depth D₁ x ⊔ depth D₂ y

gdepth : (D : Desc P) → Fix D → N
gdepth D (In x) = succ (depth D x)

To prove that some x : Fix D is indeed in the corresponding enumerator requires some thought.
We need a careful recursive argument: in particular, the depth of a pair returns themaximum depth
of its elements. As a result, we need to use strong induction to show that our generic enumerator
is complete, i.e. we can formulate and prove the following property:

completeness-lemma : (D : Desc List) (x : ⟦ D ⟧ (Fix D’)) (xs : List (Fix D’)) →
((y : Fix D’) → gdepth D’ y ≤ depth D x → y ∈ xs) →
x ∈ enumerator D xs

Informally, this property states that x is guaranteed to occur in the the generic enumerator built
from the list of values xs, provided each subtree y that xmay contain already occurs in xs.The proof
itself follows from the key property of our enumerator combinators that we showed in Section 2:
they never discard elements.

Next, we can define the corresponding top-level proof that calls the completeness-lemma, while
passing itself recursively to prove the completeness of any recursive calls:

completeness : (D : Desc List) → Complete (genumerator D)

We have chosen to ignore constant types in this proof sketch. To complete the proof, we have
extended the completeness-lemma with a further assumption that the lists of elements associated

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

A completely unique account of enumeration 1:11

with the constant types that occur in D exhaustively enumerate all possible constants. Nonethe-
less, the proof terms for complete and completeness-lemma are fairly straightforward—once these
definitions are fixed—spanning about twenty lines of proof and using a handful of auxiliary lem-
mas.

Uniqueness. Now that we have shown that our generic enumerators are complete, we will prove
that the lists they produce are free of duplicates. The proof itself follows a similar pattern as we
saw for completeness: a lemma by induction on D and a main result that relies upon this lemma.
The key uniqueness-lemma required can be formulated as follows:

uniqueness-lemma : (D D’ : Desc List) (xs : List (Fix D’)) →
Unique xs → Unique (enumerator D xs)

Proving this lemma is a bit harder than the completeness result we sketched previously. Intu-
itively, for completeness we only need to construct a proof that x ∈ enumerator D xs, whereas
for uniqueness, we need to destruct such proofs. As a result, the proof requires a series of lemmas
about the interleave and prod functions. There is a pleasant duality between these lemmas and
those presented in Section 2: where the prod∈ and interleave∈ lemmas can be read as the familiar
introduction rules of propositional logic, the lemmas required to prove uniqueness are their dual
elimination rules:

interleave-elim : (xs ys : List A) → x ∈ interleave xs ys → (x ∈ xs) ⊎ (x ∈ ys)
prod-elim : ∀ (xs : List A) (ys : List B) → (x , y) ∈ prod xs ys → (x ∈ xs) × (y ∈ ys)

The proof of the uniqueness-lemma itself proceeds by induction on the description, using these
lemmas and the assumption that the list xs is free of duplicates, to prove that the call to the enu-
merator preserves uniqueness, Unique (enumerator D xs). Once again, to complete the proof
we require an additional assumption that all the enumerators for constant types contain unique
elements. Using this uniqueness lemma, we can now prove our main result:

uniqueness : (D : Desc List) (n : N) → Unique (enumerate (genumerator D) n)

This proof proceeds by straightforward induction on the natural number n. In the base case, the
list is produced empty and hence uniqueness proof is trivial. For the inductive case, we apply our
uniqueness-lemma, using our induction hypothesis and the fact that the In constructor is injective,
to establish that the resulting list is free of duplicates.

4 GENERIC ENUMERATORS FOR INDEXED FAMILIES
While regular types are fairly straightforward to enumerate, the enumeration of indexed families
is more of a challenge. To tackle this problem, we need to shift from our universe of regular types
to one capable of describing indexed families.

4.1 Universe Definition
The universe of indexed descriptions describes a wide collection of indexed families. We closely
follow the exposition byDagand [Dagand 2013], but similar constructions are ubiquitous in generic
programming with indexed families [Benke et al. 2003; Chapman et al. 2010; Dagand and McBride
2012]. Where previously we constructed the codes for regular types directly as values in Desc P,
we need to generalise this to handle indexed families of types. To do so, we introduce the following
type constructor:

Func : (Set → Set) → Set → Set1
Func P I = I → IDesc P I

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

1:12 Anon.

The type I corresponds to the index set. For example, vectors are indexed by a natural number. To
describe such indexed families, we define a function Func P I that computes the indexed descrip-
tion for each possible value i : I.

The type of codes, IDesc, is similar to the codes for regular types that we saw previously:

data IDesc (P : Set → Set) (I : Set) : Set1 where
zero : IDesc P I
one : IDesc P I
var : (i : I) → IDesc P I
⊕ : (D₁ D₂ : IDesc P I) → IDesc P I
⊗ : (D₁ D₂ : IDesc P I) → IDesc P I
‘Σ : (S : Set) → {P S} →

(S → IDesc P I) → IDesc P I

The IDesc datatype has constructors for the empty type (zero), unit type (one), the recursive posi-
tions (var) and is closed under products (⊗) and coproducts (⊕). Note that the recursive positions
now contain further index information: the var constructor takes a value i : I as its argument.
We use this value to designate the index associated with each recursive position. Finally, indexed
descriptions are closed under dependent pairs (‘Σ), consisting of a constant type S and a description
depending on S. We again include an extra parameter P : Set → Set to allow for extra information
to be stored about the constant type stored in the first component of a dependent pair. We shall
see examples of these indexed description shortly, but first we need to assign them semantics.

Note that this universe is not minimal—we could always encode coproducts (⊕) using dependent
pairs (‘Σ), but it can be useful to discriminate between the ‘choice of constructor’ and dependent
types—the prior being much simpler to handle than the latter.

The associated semantics, ⟦_⟧, interprets a code with index type I to a function (I → Set) → Set.
The argument function, I → Set, is used to assign semantics to the recursive positions:

⟦_⟧ : IDesc P I → (I → Set) → Set
⟦ one ⟧ X = ⊤
⟦ zero ⟧ X = ⊥
⟦ var i ⟧ X = X i
⟦ D₁ ⊗ D₂ ⟧ X = ⟦ D₁ ⟧ X × ⟦ D₂ ⟧ X
⟦ D₁ ⊕ D₂ ⟧ X = ⟦ D₁ ⟧ X ⊎ ⟦ D₂ ⟧ X
⟦ ‘Σ S f ⟧ X = Σ S λ s → ⟦ f s ⟧ X

Finally, we use the datatype Fix to tie the recursive knot and take the least fix-point of indexed
descriptions:

data Fix {P : Set → Set} (φ : Func P I) (i : I) : Set where
In : ⟦ φ i ⟧ (Fix φ) → Fix φ i

Example: Vectors. As an example, we consider the familiar example of a dependent type, namely
vectors:

data Vec (A : Set) : N → Set where
[] : Vec A zero
:: : A → Vec A n → Vec A (succ n)

A value of type Vec A n is only inhabited by lists of length n. We can describe Vec as follows:

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

A completely unique account of enumeration 1:13

VecF : Set → Func (const ⊤) N
VecF zero = one
VecF A (succ n) = ‘Σ A (const (var n))

We choose the indexed description VecF carefully such that Fix (VecF A) n is isomorphic to
Vec A n. Rather than modeling the choice between the constructors [] and :: as a coproduct, we
use the fact that there is only one constructor of Vec available for each constructor of the index,
returning one (corresponding to []) if the length is zero, and a pair consisting of a value of type
A and a recursive position with index n (corresponding to ::) if the index is of the form succ n. Of
course, the lack of coproducts in this description is specific to vectors: each index is associated
with a single constructor.

4.2 A generic enumerator for indexed types
The generic enumerator for regular types is straightforward, once we defined the types and combi-
nators for defining enumerators. In this section, we show how it can be extended to an enumerator
for the indexed descriptions.

First, we revisit our type of enumerators. Rather than pass in a list of ‘smaller values’ as we did
previously, we need to account for the additional index information. In particular, we are no longer
passed a single list, but rather a function that maps each index i : I to a list of smaller values:

IEnumerator : { I : Set} → (I → Set) → Set → Set
IEnumerator { I} A B = ((i : I) → List (A i)) → List B

While we could also let the result type B depend on I, we will refrain from doing so—we will
not need this additional generality. The semantics of our indexed descriptions ⟦_⟧ simply returns
a Set—hence it suffices to generate a simple list of values. Note that these indexed enumerators
are strictly more general than the simple Enumerator type from the introduction. Instantiating
the index set to the unit type, yields a type that is isomorphic to the original enumerators defined
in Section 2. Throughout the remainder of this section, we will use the familiar combinators for
writing enumerators—even if we should strictly speaking provide alternative versions with the
same definition, but a more general (indexed) type.

The key challenge to enumerating indexed families will be the treatment of dependent pairs,
‘Σ S {e} f. In this case, we are given an enumerator e that produces elements of type S, together
with a function f that computes an indexed description for each value of S. Crucially, we cannot
make a recursive call directly to these descriptions—but rather need a monadic bind to pass all
possible inputs to f, before recursing. In what should be a familiar pattern, we do avoid using the
usual bind of the underlying list monad implemented using concatMap. To avoid bias, we define
a version that interleaves all its intermediate results fairly:

bind : List A → (A → List B) → List B
bind [] f = []
bind (x :: xs) f = interleave (f x) (bind xs f)
≫= : IEnumerator F A → (A → IEnumerator F B) → IEnumerator F B
(e ≫= f) = λ cs → bind (e cs) (λ x → f x cs)

To illustrate this combinator in action, we can write an enumerator for dependent pairs by hand as
follows:

sigmas : IEnumerator F A → ((x : A) → IEnumerator F (B x)) → IEnumerator F (Σ A B)
sigmas e f = e ≫= λ x →

f x ≫= λ y →
pure (x , y)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

1:14 Anon.

Since the type enumerated by f is dependent on its argument, the value generated for the first
element of the pair, x, needs to be in scope to extract the corresponding enumerator. It is instructive
to compare this enumerator with the one for pairs we saw previously: in the dependent case, the
choice of the value for the first component influences the enumeration of the second component.

We can now define the generic enumerator for indexed families. It consists of two parts: the
first pattern matches on its argument description; the second is used to recurse back to the top-
level description being enumerated. The first part, ienumerator, produces a list of values of type
⟦ D ⟧ (Fix φ), given a description D and interpretation of the recursive positions, φ. The definition
is reassuringly familiar, as most cases follow the same structure as we saw for the regular types.

ienumerator : (desc : IDesc List I) → IEnumerator (Fix φ) (⟦ desc ⟧ (Fix φ))
ienumerator zero = ∅
ienumerator one = pure [tt]
ienumerator (D₁ ⊗ D₂) = pair (ienumerator D₁) (ienumerator D₂)
ienumerator (D₁ ⊕ D₂) = (inj₁ ⟨$⟩ enumerator D₁) ⟨∣⟩ (inj₂ ⟨$⟩ enumerator D₂)
ienumerator (var i) = 𝜆 rec → rec i
ienumerator (‘Σ S {e} f) = sigmas e (ienumerator ∘ f)

Thefirst four cases should be familiar: the empty type, the unit type, products and coproducts were
all covered previously. When we encounter a recursive subtree, var i, we once again use the list of
smaller values we are passed. Rather than return the list directly, as we did for regular types, we
return the list of values at index i. Finally, in the case for dependent pairs, ‘Σ, we use the (implicit)
enumerator, e, stored in the constructor to produce a value of type S; the second component, is
then produced using a recursive call to the ienumerator function using f s as the new description
to enumerate.

The top-level generic igenumerator invokes ienumerator, instantiating the indexed description
with φ i:

igenumerator : ∀ φ (i : I) → IEnumerator (Fix φ) (Fix φ i)
igenumerator φ i = In ⟨$⟩ ienumerator (φ i)

Finally, we adapt the previous definition of our enumerate function to iteratively apply our enu-
merators a fixed number of times:

ienumerate : ((i : I) → IEnumerator A (A i)) → (i : I) → N → List (A i)
ienumerate f i zero = []
ienumerate f i (succ n) = f i (λ i → ienumerate f i n)

4.3 Completeness & uniqueness
Completeness. One pleasant property of our development is that many definitions and proofs

on the universe of regular types can be extended to indexed families. Just as we defined the depth
function on regular types, the idepth function counts the number of times the (indexed) functor
must be unrolled to produce a given value:

idepth : (D : IDesc P I) → ⟦ D ⟧ (Fix φ) → N
gidepth : Fix φ i → N

With these definitions in place, we can once again proceed to define the key lemma, icomplete, by
induction on the indexed description D:

icomplete : (D : IDesc List I) (x : ⟦ D ⟧ (Fix φ)) (xsi : (i : I) → List (Fix φ i)) →
(∀ i → (y : Fix φ i) → gidepth y < idepth D x → y ∈ xsi i) →
x ∈ ienumerator D xsi

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

A completely unique account of enumeration 1:15

The general structure of this proof is the same as we saw for the regular universe. There are a few
differences worth pointing out. Instead of receiving a list of ‘smaller’ values that have previously
been constructed, we are passed a function xsi : (i : I) → List (Fix φ i), that computes a list
of values for each possible index. The stronger induction hypothesis in the penultimate argument
guarantees that any value of type Fix φ i will appear in the list associated with the index i. Each
case of this proof closely follows its regular counterpart. The base case for one is trivial; the cases
for products and coproducts relies on the completeness of the pair and interleave combinators; in
the case for recursive subtrees, we use our induction hypothesis. If D is a dependent pair, however,
the proof is slightly more challenging. Recall that ‘Σ correspond to dependent pairs—we can mimic
the completeness proof for pair, though we have to prove new auxiliary lemmas that establish that
the monadic bind operation is well behaved. To prove completeness, we do require completeness
of the enumerator for the set S that is used by the dependent pair—just as we did for constants in
the universe of regular types.

Finally, we can provide a suitable top-level completeness statement. The type of this statement
is daunting at first, but captures the same style of recursion as we saw for the complete lemma in
the previous section:

igcomplete : ∀ (φ : I → IDesc List I) (i : I) (x : Fix φ i) (n : N) →
idepth x ≤ n → x ∈ ienumerate (igenumerator φ) n i

Its proof is analogous: pattern matching on the In constructor and calling the icomplete lemma
sketched above. Once again, we have not explicitly mention the constant types that appear in
an indexed description, such as the type S that occurs in the ‘Σ constructor. To handle these, we
require an additional (implicit) argument that assumes that the lists stored for these values are
also complete.

Uniqueness. Besides completeness, we would also like to prove that the generic enumerators
of indexed families produce unique values. Given that the apparent overlap between the two uni-
verses of types we have considered, this may seem straightforward. Indeed, we can generalise the
key uniqueness-lemma for regular types to its counterpart for indexed families:

uniqueness-lemma : (D : IDesc List I) → (φ : I → IDesc List I) → (xs : (i : I) → List (Fix φ i))
→ (ih : ∀ i → Unique (xs i)) → Unique (ienumerator D xs)

Essentially, this lemma states that if we have a unique list of elements for each index, extending
this list using the ienumerator preserves uniqueness. The proof proceeds by induction on the de-
scription D; most of the cases follow using the same lemmas about pairing and interleaving as we
saw for regular types. The dependent pairs, however, prove more of a challenge.

Where most cases follow the proof for regular types, the dependent pairs prove more of a chal-
lenge.The auxiliary function, sigmas, uses the bind for lists. To reason about this, we need to prove
the following lemma:

bind-elim : y ∈ bind xs f → ∃[x] ((x ∈ xs) ↑↑ × ↑↑ (y ∈ f x))

This states that whenever y occurs in the list bind xs f, there is some x, such that we can find a
pair of proofs x ∈ xs and y ∈ f xs. We can use this to establish a similar ‘elimination principle’ for
dependent pairs:

sigmas-elim: (xs : IEnumerator F A) (f : (x : A) → IEnumerator F (B x))
→ (x , y) ∈ sigmas xs f rec → x ∈ xs rec × y ∈ f x rec

Finally, we need to show both these functions are injective. This is the key component of each
uniqueness proof. Given two elements of our enumeration, we can recursively deconstruct them

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

1:16 Anon.

into their constituent parts; using our induction hypothesis, together with the injectivity of our
constructors, we can then establish uniqueness.

The full proof requires an additional assumption, similar to the one we mentioned for regular
types, stating that all the constant types (that occur in the ‘Σ constructor) are enumerated uniquely.
Interestingly, however, we do not require any injectivity of the functions associated with these
constructors—these functions are only used to express the type dependency; to prove uniqueness,
we simply have to prove that pair of values occurs no more than once.

5 MEMOISATION
There is one important difference between the enumerators for regular datatypes and indexed
families: where the enumerators for regular types are passed a list of previously constructed values,
those for indexed families are passed a function of type (i : I) → List (A i), returning the list
of previously constructed values at each index. In Section 2.3, we illustrated the importance of
not recomputing previously enumerated values over and over again: doing so quickly leads to an
exponential slowdown in enumeration. Now consider the following example of an indexed family:

data Tree : N → Set where
Leaf : Tree 0
Node : Tree n → Tree n → Tree (succ n)

When enumerating such trees, we run into the same problem as we encountered in the naive
enumeration of simply typed binary trees: in the case for nodes, we will make two calls to the
indexed enumerator passed. We have lost the sharing of previous results by shifting to the enu-
meration of indexed families.

Fortunately, there is a well known representation of functions as data structures [?]: if we restrict
ourselves to an index set that is regular, we can memoise the enumeration of indexed families,
thereby avoiding superfluous recomputation. This section sets out to achieve just that.

5.1 Generic tries
The key idea behind memoisation is to define an alternative—yet equivalent—representation of
functions. We will sketch the interface of the required functions first, before presenting their
datatype generic implementation. This section leans heavily on previous work [??], but extends
these results to a total and dependently typed setting.

First and foremost, we need a type representing generic lookup structures or tries:
_ ↦→_ : Set → Set → Set

As we are interested in memoising a dependent function of the form (i : I) → List (A i), we will
need to generalise this slightly:

_ ↦→_ : (A : Set) → (B : A → Set) → Set

In addition to the type of generic tries, we will define a pair of functions to create and consult tries:
trie : ((x : A) → B x) → (A ↦→ B)
untrie : (A ↦→ B) → ((x : A) → B x)

As its name suggests, the trie function constructs a trie; the untrie function looks up the value
associated with a key of type A in a given trie. Finally, we require that untrie is the left inverse of
trie, that is untrie ◦ trie ≡ id.

We will now implement this interface generically for any function whose domain consists of a
regular type. That is, we consider the special case of memoising functions of the form:

(x : Fix D) → B x

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

A completely unique account of enumeration 1:17

This restriction enables us to define a memoisation structure, Memo D, by induction on the de-
scription D:

Memo : (D : Desc P) → (R : (Fix D’ → Set) → Set) → (B : ⟦ D ⟧ (Fix D’) → Set) → Set
Memo zero R B = ⊤
Memo one R B = B tt
Memo var R B = R B
Memo (k S) R B = (s : S) → B s
Memo (D₁ ⊗ D₂) R B = Memo D₁ R (𝜆 x → Memo D₂ R (𝜆 y → B (x , y)))
Memo (D₁ ⊕ D₂) R B = Memo D₁ R (𝜆 x → B (inj₁ x)) × Memo D₂ R (𝜆 y → B (inj₂ y))

The type of Memo may seem daunting at first blush. The Memo type takes three arguments: the
description D, the type of recursive tries R, and the codomain of the function being memoised B.
When reading this definition, you may want to keep in mind that the type variable for recursive
tries, R, will later be instantiated with the _ ↦→_ type—corresponding to a (corecursive) Memo
structure. Most clauses of this definition follow from the familiar laws of exponentiation:

𝐶𝐴+𝐵 = 𝐶𝐴 ×𝐶𝐵 𝐶𝐴×𝐵 = 𝐶𝐴𝐵
𝐶0 = 1 𝐶1 = 𝐶

The only remaining cases are those for recursive parameters, constants k, and recursive param-
eters one. For the sake of simplicity, we do not memoise functions over constant types for the
moment—although we could use the additional P parameter in descriptions to store more efficient
memoisation structures, such as Patricia trees for fixed width integers for instance. For recursive
types, var, we use the the additional type parameter R. We tie the recursive knot by defining the
coinductive _ ↦→_ type as follows:

record _ ↦→_ (D : Desc P) (B : Fix D → Set) : Set where
coinductive
constructor mkMemo
field

getMemo : Memo D (𝜆 X → D ↦→ X) (𝜆 x → B (In x))

Each such trie D ↦→ B is given by a memo structure—determined by D—where the recursive
components themselves are new memo structures. At this point, it may be instructive to consider
an example. We can define the description of natural numbers natD as follows:

natD = one ⊕ var

Every natural number is either zero (given by inj₁ tt) or a successor (given by inj₂ n for some natural
number n). Given these definitions, we can consider the type of tries memoising computations of
the form (x : Fix natD) → B x, that is: what is the type natD ↦→ B? Unfolding the Memo and
_ ↦→_ definitions above, this gives rise to the coinductive datatype arising as the greatest fix-point
of the following equation:

MemoNat B = B zero × MemoNat (B ∘ succ)

The MemoNat structure corresponds to a stream of values of type B 0, B 1, B 2, and so forth.
In this way, the type natD ↦→ B describes the tabulation of a (dependent) function over natural
numbers.

To create such tabulations, we define a pair of functions, gtrie and trie. Given a function (x :
Fix D) → B x, the gtrie function corecursively constructs the corresponding generic trie, intro-
ducing the mkMemo constructor and calling the trie function:

gtrie : (D : Desc P) → ((x : Fix D) → B x) → D ↦→ B
gtrie D f = mkMemo (trie D (λ x → f (In x)))

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

1:18 Anon.

The trie function proceeds by induction on its argument description, passing increasingly complex
arguments to the function argument f in each recursive call.

trie : (D : Desc P) → ((x : ⟦ D ⟧ (Fix D’)) → B x) → Memo D (𝜆 X → D’ ↦→ X) B
trie zero f = tt
trie one f = f tt
trie var f = gtrie D’ f
trie (k S) f = f
trie (D₁ ⊗ D₂) f = trie D₁ (𝜆 x → trie D₂ (𝜆 y → f (x , y)))
trie (D₁ ⊕ D₂) f = (trie D₁ (λ x → f (inj₁ x)) , trie D₂ (λ x → f (inj₂ x)))

How can we use such generic tries? Given any argument of type Fix D, we can traverse the trie
structure to find the corresponding result. The pair of mutually recursive functions guntrie and
untrie do precisely that:

guntrie : (D : Desc P) → (D ↦→ B) → (x : Fix D) → B x
guntrie D m (In t) = untrie D (getMemo m) t
untrie : (D : Desc P) → Memo D (𝜆 X → D’ ↦→ X) B → (x : ⟦ D ⟧ (Fix D’)) → B x
untrie one m tt = m
untrie var m x = guntrie D’ m x
untrie (k S) m x = m x
untrie (D₁ ⊗ D₂) m (x , y) = untrie D₂ (untrie D₁ m x) y
untrie (D₁ ⊕ D₂) (m₁ , m₂) (inj₁ x) = untrie D₁ m₁ x
untrie (D₁ ⊕ D₂) (m₁ , m₂) (inj₂ y) = untrie D₂ m₂ y

Once again, the heavy lifting is done by the untrie function that proceeds by induction onD. In the
case for the unit type one, we return the memoised value m. In the case for constants, we apply
the function m to the argument x. The cases for products and coproducts pattern match on the
argument x and recurse accordingly. Finally, the case for recursive subtrees var calls the guntrie
function to peel off the In constructor and recurse.

We can now compose gtrie and guntrie to create a trie and lookup the argument x in it:

gmemo : (D : Desc P) (B : Fix D → Set) → ((x : Fix D) → B x) → (x : Fix D) → B x
gmemo D B f x = guntrie D (gtrie D f) x

Of course, this gmemo should simply be (amore expensive version of) the identity function. Indeed,
we can prove the following lemma by immediate induction on the description D:

correct : ∀ (D : Desc P) (f : (x : Fix D) → B x) (x : Fix D) → gmemo D B f x ≡ f x

Before using these generic tries to memoise the indexed enumerators we saw previously, how-
ever, it is worth pointing out that these definitions are not immediately accepted by Agda. The
codatatype for tries, _ ↦→_, is not identified to be strictly positive, even though we can readily check
by hand that each of the right-hand sides of theMemo definition is. Furthermore, the trie function
is incorrectly marked as non-terminating. Whereas this definition is obviously guarded—the only
corecursive call in the branch for recursive types, var, is immediately guarded by the MkMemo
constructor—the definition is rejected by the guardedness checker and Agda’s ‘musical notation’
for coinductive definitions. In practice, however, as long as we can prove that the gmemo function
behaves as the identity, however, there need not be a problem with disabling the termination and
positivity checkers for these definitions.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

A completely unique account of enumeration 1:19

5.2 Memoising enumerators
With these generic tries defined, we can now use them to avoid recompution during enumeration.
The key insight is that, when the index set is itself regular, we can replace the argument function
with a generic trie storing the previously computed results. To achieve this, we define the following
type for memoising indexed enumerators, or memorators for short:

Memorator : (D : Desc P) → (Fix D → Set) → Set → Set
Memorator D A B = (D ↦→ (List ∘ A)) → List B

It is worth comparing this type with that of indexed enumerators defined on page 13.The gtrie and
guntrie functions defined previously can be used to convert between these two representations,
when the index set I is of the form Fix D for some description D.

We can now define a memoising version of our indexed enumerators. To do so, we follow the
familiar iterative pattern we have seen twice already:

gmemorate : ((i : Fix D) → Memorator D B (B i)) → (i : Fix D) → N → List (B i)
gmemorate f i zero = []
gmemorate f i (succ n) = f i (gtrie D (λ i → gmemorate f i n))

This definition closelymimics the enumerate and ienumerate functions defined previously.The key
difference, however, is that it maintains a trie storing the previously produced values at every index.
Similarly, we need to adapt the indexed enumerators from the previous section slightly to produce
memorators, rather than the indexed enumerators we saw previously. The required changes are
mostly superficial modifications in the type signatures, hence we refrain from presenting the code
here.

Performance. As Agda uses a call-by-need evaluation strategy, the memoised computations are
shared during enumeration. Although the current implementation of the compiler1 and abstract
machine2 have some limitationswhenmemoising coinductive computations, the presentation here
avoids these. To illustrate the performance gainmemoisation offers, consider the following indexed
description of the perfect trees we saw previously:

treeD : Fix natD → IDesc List (Fix natD)
treeD (In (inj₁ tt)) = one
treeD (In (inj₂ n)) = var n ⊗ var n

We can now define a small benchmarking suite, calling the memoising and non-memoising enu-
merator for such perfect trees:

memo-tree = 𝜆 size → gmemorate (gmemorator treeD) (fromNat size) (succ size)
non-memo-tree = 𝜆 size → ienumerate (igenumerator treeD) (fromNat size) (succ size)

Given an argument size, these functions call one of the enumerate functions we have seen. The
index we are interested in is given by fromNat size, converting a given natural number to its cor-
responding generic representation in Fix natD. Finally, we bound the computation by succ size—
providing just enough room to unfold the recursive structure of our enumerators.

Using the agda-bench3 benchmarking tool we can enumerate such trees with andwithout mem-
oisation, measuring the time necessary to enumerate perfect trees of various sizes. The results are
shown in the Table 1. While the absolute numbers are not so important, these figures clearly high-
light the performance gain that memoisation offers: enumerating the perfect tree of depth 16 using
1https://github.com/agda/agda/issues/2918
2https://github.com/agda/agda/issues/5722
3https://github.com/UlfNorell/agda-bench/

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

https://github.com/agda/agda/issues/2918
https://github.com/agda/agda/issues/5722
https://github.com/UlfNorell/agda-bench/

1:20 Anon.

Tree size Without memoisation With memoisation
1 82.28 μs 104.3 μs
2 154.6 μs 181.2 μs
4 616.7 μs 386.8 μs
8 12.27 ms 1.523 ms
16 3.522 s 111.2 ms
Table 1. Profiling the enumeration of perfect trees

memoisation is more than 30 times faster than the naive enumerators presented in the previous
section. While these results are encouraging, it is worth noting that there is only ever one per-
fectly balanced binary tree of a given depth. As a result, memoisation requires a modest amount
of additional memory; as every recursive call is re-used, we can see substantial performance gains.
Whether these numbers hold up in a more realistic example, however, will be explored in the next
section.

6 CASE STUDY: ENUMERATINGWELL-TYPED EXPRESSIONS
To illustrate how to use the datatype generic enumerators for indexed families, this section ex-
plores a small case study. In particular, we consider the types (𝑡) and expression language (𝑒) given
by the following BNF equations:

𝑡 ::= nat | bool 𝑒 ::= N | B | 𝑒 + 𝑒 | 𝑒 ∧ 𝑒 | 𝑒 ⩽ 𝑒 | 𝑥 | let 𝑒 = 𝑥 in 𝑒

The types of our expression language correspond to natural numbers or booleans. The language
itself is closed under literals, addition, conjunction, comparison, variables and let bindings. Before
giving the indexed description corresponding to this expression language, it can be useful to give
a direct datatype declaration for the types and expressions involved. Defining a datatype for the
types of our language is entirely trivial:

data Type : Set where
nat bool : Type

To model well typed (and well scoped) terms needs a bit more work. By indexing a datatype by
both its type and context, we can ensure that we cannot construct ill formed expressions:

data Expr : List Type → Type → Set where
nlit : N → Expr Γ nat
blit : Bool → Expr Γ bool
add : (x y : Expr Γ nat) → Expr Γ nat
conj : (x y : Expr Γ bool) → Expr Γ bool
leq : (x y : Expr Γ nat) → Expr Γ bool
var : t ∈ Γ → Expr Γ t
letin : Expr Γ s → Expr (s :: Γ) t → Expr Γ t
wk : Expr Γ t → Expr (s :: Γ) t

Here we have modeled the context as a list of types, describing the types of all the variables in
scope. A variable, given by the var constructor, simply refers to a particular element of this context.
The remaining constructors are mostly unsurprising, with the exception of the wk constructor. By
adding this explicit weakening operation to our language, we hope to facilitate memoisation—
enabling us to re-use previously computed expressions after going under a let-binder.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

A completely unique account of enumeration 1:21

ExprD : (Fix (k (List Type) ⊗ k Type)) → IDesc List ((Fix (k (List Type) ⊗ k Type)))
ExprD (In (Γ , t@nat))

= (‘Σ { [0] } λ → one) -- nlit
⊕ (var (In (Γ , nat)) ⊗ var (In (Γ , nat))) -- add
⊕ (‘Σ (t ∈ Γ) {vars t Γ} λ → one) -- var
⊕ ((var (In (Γ , nat)) ⊗ var (In (nat :: Γ , t))) -- let nat
⊕ (var (In (Γ , bool)) ⊗ var (In (bool :: Γ , t)))) -- let bool
⊕ (case Γ of λ where [] → zero

(s :: Γ) → var (In (Γ , t))) -- wk
ExprD (In (Γ , t@bool))

= ‘Σ Bool { true :: false :: []} (λ b → one) -- blit
⊕ (var (In (Γ , bool)) ⊗ var (In (Γ , bool))) -- conj
⊕ (var (In (Γ , nat)) ⊗ var (In (Γ , nat))) -- leq
⊕ (‘Σ (t ∈ Γ) {vars t Γ} λ → one) -- var
⊕ ((var (In (Γ , nat)) ⊗ var (In (nat :: Γ , t))) -- let nat
⊕ (var (In (Γ , bool)) ⊗ var (In (bool :: Γ , t)))) -- let bool
⊕ (case Γ of λ where [] → zero

(s :: Γ) → var (In (Γ , t)))

Fig. 1. A description of well-typed expressions

Figure 1 gives an indexed description corresponding to the Expr datatype. While the definition
of ExprD seems rather complicated, it can be mechanically reconstructed from the definition of
Expr. Doing so is quite straightforward: we match on the description’s index, a tuple of a context
and a type, and return a coproduct of descriptions for each constructor that can be used to con-
struct an expression with that index. We have simplified this definition in one or two places, in
an attempt to keep the number of expressions manageable. In the case for letin, we “inline” all
possible combinations to avoid having to choose a type variable with the ‘Σ combinator. We also
treat natural number and Boolean literals as constant types, drawn from a small set of possible
choices. Although it is possible to derive such indexed descriptions for a large class of indexed
families automatically using Agda’s metaprogramming facilities, this is beyond the scope of this
paper.

6.1 Using the Generic Enumerator
With the indexed description ExprD at hand, we can immediately obtain an enumerator for well-
typed terms, simply by invoking the generic enumerator:

expressions : (Γ : List Type) → (t : Type) → N → List (Fix ExprD (In (Γ , t)))
expressions Γ t n = ienumerate (igenumerator ExprD) (In (Γ , t)) n

It is worth pointing out that, we know that the resulting enumerator is complete, unique and con-
structed from fair combinators. Furthermore, we can construct a memoising enumerator equally
easily.

expressions-memo : (Γ : List Type) → (t : Type) → N → List (Fix ExprD (In (Γ , t)))
expressions-memo Γ t n = gmemorate (gmemorator ExprD) (In (Γ , t)) n
It is worth comparing the performance of these two enumerators. Table 2 shows the execution

times for enumerating all closed expressions of type nat up to various depths, together with the
length of the lists involved. Once again, the absolute numbers are not particularly important. First

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

1:22 Anon.

Depth Without memoisation With memoisation Number of terms
1 96.79 μs 132.0 μs 1
2 699.0 μs 1.225 ms 5
3 11.57 ms 14.13 ms 143
4 — — 208471
Table 2. Profiling the enumeration of well-typed expressions with type nat

of all, it is worth noting that the number of terms rapidly explodes—there are more than 200K
expressions of depth four or less. While we can compute the total number of elements quickly
enough, computing such long lists (and storing them inmemory) is intractable. For property-based
testing, however, one can still compute the first thousand elements at this depth in a handful of
milliseconds.

Contrary to our previous benchmark, however, it appears that memoisation is slower than us-
ing the non-memoising enumerator. We ascribe this to the sheer length of the lists involved. The
memoising enumerator will initially cache many relatively inexpensive computations. It is only
as the cost of recomputation increases that memoisation will yield substantial performance gains.
Unfortunately, as the depth parameter increases, the number of terms grows so quickly, that this
becomes the dominating cost in enumeration.

Does thismean that thememoising enumerators presented in Section 5.2 are pointless?The good
news is that, as far as we can tell, the overhead they introduce at small depths remains modest. On
the other hand, we can imagine indexed families where the enumerations grow less rapidly, such
as red-black trees or sorted lists, where there are fewer constructors and the type information is
used to constrain or rule out certain ill-formed elements. In these situations, we expect memoising
enumerations to outperform our naive enumerators eventually.

7 DISCUSSION
Related work
There is a large body of related work on property-based testing, datatype generic programming,
and datatype enumeration. The original work on QuickCheck [Claessen and Hughes 2000] has
generated a great deal of research in the area of property-based testing. The test data generation
that we propose here, however, is not random, but more inspired by similar libraries based on
exhaustive enumeration of values such as SmallCheck [Runciman et al. 2008]. We will roughly
divide the related work into these two camps: random generators and enumeration.

Random generators. Since the initial work on QuickCheck, there have been numerous articles
porting these ideas to proof assistants. Early work by ? and ? was the first to explore the uniform
random generation of indexed families in Agda. Work by ?? shows how to enumerate the inhabi-
tants of a syntactic subset of Isabelle. Amore recent notable example, is thework onQuickChick [Dénès
et al. 2014] that ports QuickCheck to the Coq proof assistant.

Datatype generic generators for indexed families have been developed for QuickChick [Lam-
propoulos et al. 2018]. Like QuickCheck, the generic generators require an explicit size bound.
QuickCheck identifies a completeness property, similar to the one in this paper, by mapping gen-
erators to the set of values with a non-zero probability and ensuring all possible inhabitants of a
type have such non-zero probabilities of being enumerated.

Proving properties and writing generic instances of these random generators is less straightfor-
ward than the definitions given here [?] as “QuickChick uses an incomplete heuristic for trying

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

A completely unique account of enumeration 1:23

out different sizes in an efficient way.” The proofs about QuickChick’s behaviour try to abstract
over the size parameter where possible. Contrasting this to the approach presented here, where
we make the recursive structure an enumerators explicit, we see that the only place where we
use size bounds is in proving completeness of the top-level enumeration functions that ‘tie the re-
cursive knot’ so to speak. The individual combinators, such as those for interleaving and cartesian
products, do not mention sizes at all, nor do their proofs of fairness, uniqueness, and completeness.

Claessen et al. [2015] explores how to generate constrained random data that satisfies some
predicate. The interface is similar to the combinators presented here, with constructs for handling
products, coproducts, empty types, singleton values, and an applicative star operation. However,
to handle recursive types requires an explicit Pay constructor to bound the size of the generated
data and avoid divergence. Similarly, the proof of uniformity presented has not been formalised
in a proof assistant.

Enumeration. To the best of our knowledge, the existing work on datatype enumeration focuses
on regular datatypes, rather than the indexed families considered here. The approach we take here
is similar in spirit to LeanCheck [Braquehais 2017], that strives to define enumerators using a min-
imal set of combinators. LeanCheck, however, structures its enumerators using tiers, much in the
same way as the stream semantics we defined above. To ensure that the enumerators are produc-
tive, however, users may need to insert explicit delay when defining enumerators. Furthermore,
LeanCheck does not attempt to prove completeness, fairness, or uniqueness of its enumerators,
even in the case for regular datatypes.

The work on functional enumerations of algebraic types (FEAT) [Duregård et al. 2012] takes
a similar approach to ours—instead of enumerating all possible values, we consider finite lists
approximating the elements of an algebraic datatype. The work on FEAT, however, once again
requires an explicit pay construct to handle recursive types.The ideas underlying the FEAT library
is to sample random elements up to a given size efficiently by caching the size of sub-enumerations.
These enumerations, however, are limited to regular datatypes.

Yakushev and Jeuring [2009] consider a similar problem in the context of Haskell, showing how
to use the spine views [Hinze et al. 2006] on GADTs, extended with a form of existential quantifica-
tion, to define enumerators—mostly with the aim of enumerating well-typed lambda terms. Their
approach is, however, restricted to those invariants that can be expressed using a GADT, rather
than the dependent types that can be expressed using the indexed families—including dependent
pairs—covered in this paper.

? give a more thorough treatment of fairness for enumerators, especially aimed at the fair enu-
meration of infinite lists. ? consider fairness of (infinite) enumerators to correspond to a non-
starvation property—every sub-enumerator will eventually produce its values—the case for finite
lists is considered degenerate, using list concatenation rather than the interleaving presented here.
The notion of fairness presented in this paper relies on using dependent types extensively: we need
to prove the completeness lemmas to even formulate the desired fairness properties. Furthermore,
we can avoid some spurious cases by only ever comparing valid positions in a list, x ∈ xs, as op-
posed to any pair of natural numbers. All in all, this work establishes a stronger notion of fairness
that holds for finite enumerations.

The work by ? does, however, raise an important point that we have ignored in this paper: al-
though binary products and binary sums suffice to model datatypes with any number of construc-
tors, doing so may yield unbalanced enumerators. For example, representing a datatype with three
constructors using binary sums will necessarily skew the enumeration towards one of the three
constructors. The solution is clear: generalising the binary products and sums to n-ary products

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

1:24 Anon.

and sums, much in the style of the ‘true sums-of-products’ approach to datatype generic program-
ming [?]. Adapting our enumerators is reasonably straightforward, replacing interleaving with
transposition and generalising the pair enumerator to compute n-ary cartesian products. We have
refrained from doing so in this work, largely to keep the generic presentation as simple as possible.

Future work
Performance. When writing these enumerators, we have not focused on performance. There are
plenty of other opportunities for optimisations, such as fusing the repeated map operations over
intermediate lists, that we have not pursued in this paper. Furthermore, Duregård et al. [2012]
have shown how caching the intermediate sizes of the enumerated sub-terms can drastically im-
prove performance when arbitrarily sampling from the enumeration. It would be interesting to
attempt to extend their techniques to the (indexed) datatypes studied here, where we may be able
to show how another iteration of our generic enumerator extends the size of the (indexed) list of
values generated in a predictable fashion. Using these ideas, we could then uniformly sample the
inhabitants of an indexed family up to a given size.

Automation. As our case study shows, there is still quite some overhead involved in manually
writing the descriptions corresponding to a user-defined datatype. Using Agda’s reflection and
metaprogramming facilities [Van Der Walt and Swierstra 2012], it should be possible to automate
the derivation descriptions for datatypes, and their isomorphism converting between the two rep-
resentations. By also using Agda’s instance search [Devriese and Piessens 2011], we can then
automatically generate enumerators for user-defined datatypes.

Specification discovery and tactics. A surprising application of property-based testing is the auto-
matic generation of specifications. QuickSpec [Claessen et al. 2010] is one such tool that, based on
QuickCheck. Given a set of functions, QuickSpec automatically generates collection of candidate
equalities. This collection of equations is then iteratively refined by checking them against ran-
domly generated inputs produced byQuickCheck, and removing those equations that are falsified.
TheHipSpec tool [Claessen et al. 2012] takes these ideas one step further, by automatically proving
the generated equalities.

Given these enumerators of indexed families, however, we can do even better. Tools such as
QuickSpec only ever find equalities between terms—but oftentimes, we are more interested in prov-
ing that some inductive relation is inhabited. For example, given an insert function and isSorted
predicate, one might imagine generating the following statement:

∀ x xs → isSorted xs → isSorted (insert x xs)

Testing such suitable candidate theorems requires the ability to generate arbitrary indexed fami-
lies, which QuickSpec cannot do. One potential application area of these results is the automatic
generation and testing of such statements.

Another potential application of these enumerators is in proof automation. Given a proof goal
encoded as an indexed description, we try to generate an inhabitant by calling our enumerator. One
might imagine extending this idea further, allowing the user to provide certain hypotheses that
may be used in the enumeration. In this way, we can write our own version of Coq’s constructor
tactic that can be programmatically configured to restrict the search depth, constructors used, or
hypotheses available.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

A completely unique account of enumeration 1:25

Conclusion
This paper shows how both regular datatypes and indexed families can be enumerated. We have
sketched the mechanized proof of completeness and uniqueness for both these generic enumer-
ators, guaranteeing that they eventually produce every possible inhabitant of every type exactly
once; these enumerators use combinators that we have shown to be fair. Furthermore, we have
shown how to avoid recomputation by sharing recursive calls and applying memoisation. The
uniform presentation of these enumerators, the simplicity of our definitions, and the formal veri-
fication of their properties, provides a fairly complete account of datatype generic enumeration.

REFERENCES
Marcin Benke, Peter Dybjer, and Patrik Jansson. 2003. Universes for Generic Programs and Proofs in Dependent Type

Theory. Nord. J. Comput. 10, 4 (2003), 265–289.
Edwin C. Brady. 2013. Idris: general purpose programming with dependent types. In Proceedings of the 7th Workshop on

Programming languages meets program verification, PLPV 2013, Rome, Italy, January 22, 2013, MatthewMight, David Van
Horn, Andreas Abel, and Tim Sheard (Eds.). ACM, 1–2. https://doi.org/10.1145/2428116.2428118

Rudy Matela Braquehais. 2017. Tools for discovery, refinement and generalization of functional properties by enumerative
testing. Ph.D. Dissertation. University of York, UK. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.731590

James Chapman, Pierre-Évariste Dagand, Conor McBride, and Peter Morris. 2010. The gentle art of levitation. In Proceeding
of the 15th ACM SIGPLAN international conference on Functional programming, ICFP 2010, Baltimore, Maryland, USA,
September 27-29, 2010, Paul Hudak and Stephanie Weirich (Eds.). ACM, 3–14. https://doi.org/10.1145/1863543.1863547

Koen Claessen, Jonas Duregård, and Michal H. Palka. 2015. Generating constrained random data with uniform distribution.
J. Funct. Program. 25 (2015). https://doi.org/10.1017/S0956796815000143

Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for random testing of Haskell programs. In Pro-
ceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP ’00), Montreal, Canada,
September 18-21, 2000, Martin Odersky and Philip Wadler (Eds.). ACM, 268–279. https://doi.org/10.1145/351240.351266

Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. 2012. HipSpec: Automating Inductive Proofs of
Program Properties.. In ATx/WInG@ IJCAR. 16–25.

Koen Claessen, Nicholas Smallbone, and John Hughes. 2010. QuickSpec: Guessing Formal Specifications Using Testing. In
Tests and Proofs - 4th International Conference, TAP@TOOLS 2010, Málaga, Spain, July 1-2, 2010. Proceedings (Lecture Notes
in Computer Science), Gordon Fraser and Angelo Gargantini (Eds.), Vol. 6143. Springer, 6–21. https://doi.org/10.1007/978-
3-642-13977-2_3

Coq Development Team. 2020. The Coq Proof Assistant Reference Manual. Available at https://coq.inria.fr/doc/.
Pierre-Évariste Dagand. 2013. A cosmology of datatypes : reusability and dependent types. Ph.D. Dissertation. University of

Strathclyde, Glasgow, UK. http://oleg.lib.strath.ac.uk/R/?func=dbin-jump-full&object_id=22713
Pierre-Évariste Dagand and Conor McBride. 2012. Transporting functions across ornaments. In ACM SIGPLAN Interna-

tional Conference on Functional Programming, ICFP’12, Copenhagen, Denmark, September 9-15, 2012, PeterThiemann and
Robby Bruce Findler (Eds.). ACM, 103–114. https://doi.org/10.1145/2364527.2364544

Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. 2015. The Lean
Theorem Prover (System Description). In Automated Deduction - CADE-25 - 25th International Conference on Automated
Deduction, Berlin, Germany, August 1-7, 2015, Proceedings (Lecture Notes in Computer Science), Amy P. Felty and Aart
Middeldorp (Eds.), Vol. 9195. Springer, 378–388. https://doi.org/10.1007/978-3-319-21401-6_26

Maxime Dénès, Catalin Hritcu, Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C Pierce. 2014. QuickChick:
Property-based testing for Coq. In The Coq Workshop.

Dominique Devriese and Frank Piessens. 2011. On the bright side of type classes: instance arguments in Agda. In Proceeding
of the 16th ACM SIGPLAN international conference on Functional Programming, ICFP 2011, Tokyo, Japan, September 19-
21, 2011, Manuel M. T. Chakravarty, Zhenjiang Hu, and Olivier Danvy (Eds.). ACM, 143–155. https://doi.org/10.1145/
2034773.2034796

Jonas Duregård, Patrik Jansson, and Meng Wang. 2012. Feat: functional enumeration of algebraic types. In Proceedings of
the 5th ACM SIGPLAN Symposium on Haskell, Haskell 2012, Copenhagen, Denmark, 13 September 2012, Janis Voigtländer
(Ed.). ACM, 61–72. https://doi.org/10.1145/2364506.2364515

Burke Fetscher, Koen Claessen, Michal H. Palka, John Hughes, and Robert Bruce Findler. 2015. Making Random Judgments:
Automatically Generating Well-Typed Terms from the Definition of a Type-System. In Programming Languages and
Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the European Joint Conferences onTheory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings (Lecture Notes in Computer Science), Jan
Vitek (Ed.), Vol. 9032. Springer, 383–405. https://doi.org/10.1007/978-3-662-46669-8_16

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

https://doi.org/10.1145/2428116.2428118
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.731590
https://doi.org/10.1145/1863543.1863547
https://doi.org/10.1017/S0956796815000143
https://doi.org/10.1145/351240.351266
https://doi.org/10.1007/978-3-642-13977-2_3
https://doi.org/10.1007/978-3-642-13977-2_3
https://coq.inria.fr/doc/
http://oleg.lib.strath.ac.uk/R/?func=dbin-jump-full&object_id=22713
https://doi.org/10.1145/2364527.2364544
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1145/2034773.2034796
https://doi.org/10.1145/2034773.2034796
https://doi.org/10.1145/2364506.2364515
https://doi.org/10.1007/978-3-662-46669-8_16

1:26 Anon.

Ralf Hinze, Andres Löh, and Bruno C. d. S. Oliveira. 2006. ”Scrap Your Boilerplate” Reloaded. In Functional and Logic
Programming, 8th International Symposium, FLOPS 2006, Fuji-Susono, Japan, April 24-26, 2006, Proceedings (Lecture Notes
in Computer Science), Masami Hagiya and Philip Wadler (Eds.), Vol. 3945. Springer, 13–29. https://doi.org/10.1007/
11737414_3

R. John Muir Hughes. 1986. A novel representation of lists and its application to the function “reverse”. Information
processing letters 22, 3 (1986), 141–144. https://doi.org/{10.1016/0020-0190(86)90059-1}

Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce. 2018. Generating good generators for inductive
relations. Proc. ACM Program. Lang. 2, POPL (2018), 45:1–45:30. https://doi.org/10.1145/3158133

Ulf Norell. 2009. Dependently typed programming in Agda. In Proceedings of TLDI’09: 2009 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation, Savannah, GA, USA, January 24, 2009, Andrew Kennedy
and Amal Ahmed (Eds.). ACM, 1–2. https://doi.org/10.1145/1481861.1481862

Michal H. Palka, Koen Claessen, Alejandro Russo, and John Hughes. 2011. Testing an optimising compiler by generating
random lambda terms. In Proceedings of the 6th InternationalWorkshop on Automation of Software Test, AST 2011,Waikiki,
Honolulu, HI, USA, May 23-24, 2011, Antonia Bertolino, Howard Foster, and J. Jenny Li (Eds.). ACM, 91–97. https://doi.
org/10.1145/1982595.1982615

Colin Runciman, Matthew Naylor, and Fredrik Lindblad. 2008. Smallcheck and lazy smallcheck: automatic exhaustive
testing for small values. In Proceedings of the 1st ACM SIGPLAN Symposium on Haskell, Haskell 2008, Victoria, BC, Canada,
25 September 2008, Andy Gill (Ed.). ACM, 37–48. https://doi.org/10.1145/1411286.1411292

Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bhar-
gavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean Karim Zinzindohoue, and Santiago Zanella Béguelin.
2016. Dependent types and multi-monadic effects in F. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodík
and Rupak Majumdar (Eds.). ACM, 256–270. https://doi.org/10.1145/2837614.2837655

Paul Tarau. 2015. On Type-directed Generation of Lambda Terms. In Proceedings of the Technical Communications of the
31st International Conference on Logic Programming (ICLP 2015), Cork, Ireland, August 31 - September 4, 2015 (CEUR
Workshop Proceedings), Marina De Vos, Thomas Eiter, Yuliya Lierler, and Francesca Toni (Eds.), Vol. 1433. CEUR-WS.org.
http://ceur-ws.org/Vol-1433/tc_12.pdf

Paul Van Der Walt and Wouter Swierstra. 2012. Engineering proof by reflection in Agda. In Symposium on Implementation
and Application of Functional Languages. Springer, 157–173.

Alexey Rodriguez Yakushev and Johan Jeuring. 2009. Enumerating Well-Typed Terms Generically. In Approaches and Ap-
plications of Inductive Programming, Third International Workshop, AAIP 2009, Edinburgh, UK, September 4, 2009. Revised
Papers (Lecture Notes in Computer Science), Ute Schmid, Emanuel Kitzelmann, and Rinus Plasmeijer (Eds.), Vol. 5812.
Springer, 93–116. https://doi.org/10.1007/978-3-642-11931-6_5

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

https://doi.org/10.1007/11737414_3
https://doi.org/10.1007/11737414_3
https://doi.org/{10.1016/0020-0190(86)90059-1}
https://doi.org/10.1145/3158133
https://doi.org/10.1145/1481861.1481862
https://doi.org/10.1145/1982595.1982615
https://doi.org/10.1145/1982595.1982615
https://doi.org/10.1145/1411286.1411292
https://doi.org/10.1145/2837614.2837655
http://ceur-ws.org/Vol-1433/tc_12.pdf
https://doi.org/10.1007/978-3-642-11931-6_5

	Abstract
	1 Introduction
	2 Fair and complete enumeration
	2.1 Enumerator Combinators
	2.2 A fair pair
	2.3 Recursive enumerators
	2.4 Enumerator completeness & uniqueness

	3 Generic enumeration of regular types
	3.1 Regular types
	3.2 A Generic Enumerator For Regular Types

	4 Generic Enumerators for Indexed Families
	4.1 Universe Definition
	4.2 A generic enumerator for indexed types

	5 Memoisation
	5.1 Generic tries
	5.2 Memoising enumerators

	6 Showcase: Enumerating a Well-Typed Expression Language
	6.1 A Description of Well-Typed Expressions
	6.2 Using the Generic Enumerator

	7 Discussion
	References

